色斑试验作为合成 Cathinones 快速检测的推定工具

Chemistry

Your institution must subscribe to JoVE's Chemistry section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Summary

在这里, 我们提出了一个简单的, 廉价的, 选择性化学斑点测试协议, 以检测合成 cathinones, 一类新的精神活性物质。该议定书适用于遇到非法材料的各个执法领域。

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Philp, M., Shimmon, R., Tahtouh, M., Fu, S. Color Spot Test As a Presumptive Tool for the Rapid Detection of Synthetic Cathinones. J. Vis. Exp. (132), e57045, doi:10.3791/57045 (2018).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

合成 cathinones 是一大类新的精神活性物质 (NPS), 越来越普遍的药物缉获由执法和其他边境保护机构在全球范围内。颜色测试是一种推定的识别技术, 它使用快速而不复杂的化学方法来表示某一特定药物类别的存在或缺失。由于其相对较近的出现, 目前尚不具备对合成 cathinones 的具体鉴定的颜色测试。在这项研究中, 我们引入了一个协议的推定识别的合成 cathinones, 采用三水试剂溶液: 铜 (II) 硝酸盐, 29-二甲基-110-菲咯啉 (试剂) 和醋酸钠。将疑似药物的小针头大小 (大约 0.1-0.2 毫克) 添加到瓷斑板的井中, 然后在加热板上依次添加滴。在10分钟后, 从非常浅的蓝色到黄橙色的颜色变化表明可能存在的合成 cathinones。在法医实验室中, 这种高度稳定和特异的试验试剂有可能用于推定筛选未知样品, 用于合成 cathinones。然而, 对颜色变化结果的额外加热步骤的滋扰限制了测试的实验室应用, 并降低了容易翻译到现场测试的可能性。

Introduction

非法药物市场的运作与传统业务相似, 继续发展并适应不断变化的市场。现代技术的进步, 特别是在全球范围内, 强大的通信的激增, 通过暗网1和用户之间通过在线论坛2的广泛知识共享而增加了在线购买。与化学的进步相结合, 新的精神活性物质 (NPS) 的迅速出现, 给国际和国家药物管制带来了严重的挑战。

NPS 是有潜在危险的滥用药物, 对国际管制下的药物有类似的影响。最初作为 "法律" 的替代品销售, 在2009和 20163之间向联合国毒品和犯罪问题办事处 (禁毒办) 报告了 739 NPS。根据最近的年度报告, 在澳大利亚边境截获了一个记录数量的 NPS, 其中大多数是经过分析的, 进一步被确定为合成 cathinones4。在全球范围内, 自2010年首次报告以来, 合成 cathinones 的缉获量稳步增加, 是最常见的被缉获的 NPS5之一。

NPS 所构成的挑战主要是已发布的讨论主题6,7。法医实验室和执法人员处于劣势, 没有适当的方法在迅速出现时发现和识别核动力源。广泛的研究, 包括合成 cathinones 的检测, 在缴获的材料, 已使用气相色谱-质谱 (gc-ms)8和液相色谱-高分辨率质谱 (LC-人力资源)9验证性分析。对最小样品制备的需求不断增加, 已见红外和拉曼光谱10研究以及环境电离质谱分析, 如实时质谱直接分析 (DART-MS)11,12. 在该领域对快速、敏感的分析的需要也看到了将纸喷雾电离质谱 (PSI) 纳入到便携式设备中, 供执法人员13使用。许多仪器技术提供了验证性的分析与敏感的检测和定量的结果。但是, 对于高通量分析, 由于样品的准备、运行时间和仪器的培训和维护, 它们可能会耗费时间。

假定的颜色测试旨在建议在测试示例14中存在或缺少某些药物类。被缉获药物分析科学工作组 (SWGDRUG) 将颜色测试归类为最低的辨别力技术, 同时使用紫外光谱和免疫15。但是, 与其他技术相比, 执法部门和其他安全人员仍然广泛雇用他们, 以大大降低成本提供迅速的结果。彩色斑点测试方法所提供的主要优势是能够使用便携式测试套件在现场执行。

颜色测试的选择性取决于测试试剂与药物类之间发生的个别化学反应, 从而产生颜色变化。目前的推定测试协议缺乏检测合成 cathinones 的特殊测试;通常使用的试剂缺乏特异性和含有有害物质。其他推荐试剂尚未在大量可能的合成 cathinone 物质上进行筛选16

这项工作的目的是提出一个简单的颜色测试协议, 可以很容易地使用的有关各方的初步筛选的合成 cathinones 在未知成分的非法物质。有关各方将包括执法部门、边防保护机构、法医实验室和其他有关安全人员。所提出的方法采用电子接受铜络合物试剂和富电子合成 cathinone 药物分子之间的还原氧化反应。使用这些化学方法开发, 你可以应用它们的形式推定颜色测试, 建议存在的合成 cathinones。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 颜色测试试剂溶液的制备

注: 将0.12 克硝酸铜重三水成干100毫升的烧杯。加入30毫升的去离子 (DI) 水, 在室温下小心地旋转, 以溶解所有固体。将这个溶液倒入100毫升的容积烧瓶中, 用 DI 水填充到标定的标记上。这个准备好的溶液是试剂1。
注: 试剂1可使用其他铜 (ii) 盐,氯化铜 (ii) 制备。

  1. 称0.11 克 29-二甲基-110-邻菲咯啉 (试剂) 半水合物为干100毫升烧杯。加入50毫升0.10 摩尔/L 盐酸 (HCl), 并使用玻璃搅拌棒促进固体在室温下溶解。将这个溶液倒入100毫升的容积烧瓶中, 用0.10 摩尔/L HCl 填充到标定的标记上。这个准备好的溶液是试剂2。
    注意: 试剂是剧毒的, 会引起皮肤发炎和严重的眼部损伤。在处理时戴上手套和安全眼镜, 以尽量减少暴露的风险。
    注: 试剂只是微溶于水, 因此, 稀酸用于制备此试剂, 并确保所有固体溶解。
  2. 将16.4 克醋酸钠放入干100毫升的烧杯中。加入50毫升的 DI 水, 用玻璃搅拌棒在室温下促进固体的溶解。将这个溶液倒入100毫升的容积烧瓶中, 用 DI 水填充到标定的标记上。这个准备好的溶液是试剂3。
    注意: 协议可以在此处暂停。该试剂是高度稳定的, 可储存在室温下长达12月。

2. 颜色测试

  1. 收集一个清洁的瓷斑板, 三一次性管, 三试剂解决方案在步骤 2.1, 一清洁刮刀, 电动板和样品/缴获的材料进行测试。
  2. 使用刮刀, 放置一个小的, 针头大小的数量 (约 0.1-0.2 毫克) 的未知样品成三单独的井瓷斑板。留下三相邻井空 (空白控制) 和另外三个井与相等的数额 4-methylmethcathinone HCl (4-MMC), 一个综合 cathinone 参考样品 (正面控制)。
    注: 首选的测试表面是瓷斑板。如果这些不可用, 使用塑料微板或半微型试管。
  3. 使用一次性吸管, 添加5滴硝酸铜溶液 (试剂 1) 到每个样品井, 除了空白和积极控制井。
  4. 使用第二个一次性吸管, 添加2滴的试剂溶液 (试剂 2) 到每个样品井, 除了空白和积极控制井。
  5. 使用第三个一次性吸管, 添加2滴醋酸钠溶液 (试剂 3) 到每个样品井, 除了空白和积极控制井。
    注: 溶液变成浅蓝色。
  6. 将瓷斑板直接放置在80° c 的电动板上。
    注: 请勿在板上直接加热塑料微板。准备一个浅沸腾的水浴, 设置塑料板。在小型沸水浴中加热半微量试管。观察颜色变化所需的精确时间将取决于光斑板的厚度和组成。
    注意: 在处理斑点板时要小心, 以防烫伤。
  7. 加热10分钟后, 用肉眼观察并注意最终颜色的变化或拍摄最后颜色变化的照片。
    注意: 使用白色背景可以更好地可视化颜色变化。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

通过几项研究验证了测试协议, 其结果在利et al.中进行了描述17. 颜色测试方法可以通过从浅蓝色到橙色 (图 1) 的颜色变化, 推定检测未知样品中的合成 cathinones。在加热周期后发生的黄色和橙色变化被认为是阳性测试结果和任何其他颜色变化, 包括非常微弱的黄色或在 heatingare 被视为负数之前发生的变化 (表 1)。

该议定书已适用于44合成 cathinone 类似物, 44 其他非法药物, 和36杂粉和切割剂在以前发表的工作17。在补充文件 1中总结了这些物质所经历的颜色变化。这些研究表明, 该协议的成功, 在推定识别存在的合成 cathinones。测试协议显示了一个89% 真实的阳性测试率和假阳性率为10%。图 2中说明了具有代表性的阳性测试结果,图 3提供了典型的负测试结果。此测试协议还可以成功地识别包含多个化合物 (图 4) 的混合物中的合成 cathinones 的存在。这是一个重要的结果, 表明它的适用性, 现实世界的样品。

Figure 1
图 1: 在瓷斑板上执行的颜色测试协议的代表性结果.(A)颜色仅与试剂 (空白控件) 保持淡蓝色。(B)黄橙色变化与合成 cathinone, 4-methylmethcathinone HCl (正控制)。请单击此处查看此图的较大版本.

Figure 2
图 2: 在瓷斑板上执行的颜色测试协议具有代表性的阳性结果.在一个积极的结果中看到的颜色范围是由于不同的抗氧化能力和溶解度的化合物。(A)黄橙色变化与合成 cathinone, n, n-dimethylcathinone HCl (真阳性)。(B)浅黄色-橙色的颜色变化与合成 cathinone, 34-dimethylmethcathinone HCl (真阳性)。(C)浅色橙色的颜色随边缘的绿色环而变化, 合成 cathinone, 24, 5-trimethylmethcathinone HCl (真阳性)。(D)黄颜色变化与哌嗪模拟, 1-[3-三氟甲基苯基] 哌嗪 (TFMPP) HCl (假阳性)。请单击此处查看此图的较大版本.

Figure 3
图 3: 在瓷斑板上执行的颜色测试协议的代表性阴性结果。(A)淡绿色变色与合成 cathinone, 34-二-α-pyrrolidinobutiophenone (MDPBP) HCl (假阴性)。(B)蓝颜色变化与杂粉, 甘氨酸 (真阴性)。(C)橙色变色与药物前体, 34-3,4--2-丙酮 (MDP2P) 发生在加热前 (真阴性)。(D)颜色保持淡蓝色, 苯丙胺硫酸盐 (真阴性)。请单击此处查看此图的较大版本.

Figure 4
图 4: 对化合物混合物执行颜色测试协议的代表性结果。(a)黄橙颜色的变化与 4-methylmethcathinone 盐酸和麻黄碱混合物. (B)黄色-橙色的颜色变化, 混合 4-methylmethcathinone hcl 和 4-fluoromethcathinone (4-固定) hcl.请单击此处查看此图的较大版本.

Table
表 1: 使用颜色测试协议观察到的颜色更改将所提出的铜-试剂色测试协议应用于124种不同的物质, 并记录了颜色的变化。黄色和橙色表示一个正的测试结果, 而任何其他颜色则报告为负结果。

补充文件1。基板的颜色测试结果。请单击此处下载此文件.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

这种颜色测试协议是根据苏拉亚·奥贝德et al发布的实验工作改编的。18中, 作者演示了在阿拉伯茶叶工厂提取的 cathinone 中出现颜色变化的情况。对已公布的议定书进行修改是必要的, 以预见其在推定的非法药物检测中的应用。最重要的考虑是减少反应的规模。本文件所述的议定书旨在适用于街头抽样和药物缉获。

所描述的协议提供了一个简单的假设指示的存在的合成 cathinones 在一个样本。至关重要的是, 该协议的加热步骤是必要的, 以可视化的颜色变化的要求强度在规定的时间限制。瓷斑板的厚度和组成可能会影响由于板材材料的导热性而导致颜色变化所需的时间。10分钟的加热周期是为了允许这些差异。斑块也应该平放在板上, 这样所有的水井都能感受到同样的热量。加热现场板超过10分钟或在80° c 以上的温度可以通过水溶液的蒸发消极地影响结果。第二个关键步骤是添加所有三种试剂, 因为该协议将无法在没有全部三的情况下工作。

假定颜色测试被设计为对某一药物类有选择性;提供快速的结果, 并具有一定的可移植性, 允许在现场应用。热源的要求大大降低了测试方法的可移植性。此外, 10 分钟的加热周期不是等待假定颜色测试的理想时间长度, 而是此测试协议的限制。

该协议中发生的颜色变化的基础是一个非特定的还原-氧化反应, 这意味着合成 cathinone 分子不是一个配体在最后的有色复杂。这种固有的非特定反应意味着有可能会干扰和减少铜 (II) 离子的其他物种,例如抗坏血酸, 因此降低了测试的特异性。

所有非法药物的推定颜色测试都是基于分析员的颜色知觉的一种主观形式。这里提出的颜色测试协议是特别简单的, 因为只有一个颜色变化指示合成 cathinone 的存在。这是不同于许多一般的筛选颜色测试, 买得起几种不同的色调取决于药物的礼物。

本文介绍了一个有用的和新颖的协议推定建议存在的合成 cathinones 在缴获的材料之前, 验证性的分析。通常使用的颜色测试试剂不能承受铜试剂试剂所提供的所需的特异性。最常用的一般筛选颜色测试试剂, 侯爵, 已被证明为许多合成 cathinones19的负面结果。虽然 Liebermann 的试剂确实与 cathinones 反应, 但它也与其他非法材料发生反应, 包括许多合成大麻20

本议定书适用于法医化验所, 采用推定检验检出样本。试剂解决方案是高度稳定的, 而且协议本身特别容易遵循。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

作者希望通过澳大利亚政府的研究培训计划获得对摩根利的支持。

Materials

Name Company Catalog Number Comments
Chemicals
Reagents and solvents
neocuproine hemihydrate Sigma-Aldrich 72090 ≥99.0%. Acute toxicity
copper(II) nitrate trihydrate Sigma Aldrich 61197 98.0%-103%
sodium acetate Ajax Finechem AJA680 anhydrous
hydrochloric acid RCI Labscan RP 1106 36%. Corrosive
Name Company Catalog Number Comments
Powders
ascorbic acid AJAX Finechem UNIVAR 104 L
benzocaine Sigma-Aldrich E1501
benzoic acid Sigma-Aldrich 242381 ≥99.5%
boric acid Silform Chemicals R27410
caffeine Sigma-Aldrich C0750
cellulose Sigma-Aldrich 435236 microcrystalline
calcium chloride AJAX Finechem UNILAB 960
citric acid AJAX Finechem UNIVAR 160
codeine phosphate Glaxo - Acute toxicity
cysteine Sigma-Aldrich 168149 L
dimethylsulfone Sigma-Aldrich M81705 98%
ephedrine HCl Sigma-Aldrich 285749 99%. Acute toxicity
glucose AJAX Finechem UNIVAR 783 D, anhydrous
glutathione AJAX Finechem UNILAB 234
glycine AJAX Finechem UNIVAR 1083
lactose Sigma L254 D, monohydrate
levamisole HCl Sigma-Aldrich PHR1798 Acute toxicity
magnesium sulphate Scharlau MA0080 anhydrous, extra pure
maltose AJAX Finechem LABCHEM 1126 Bacteriological
mannitol AJAX Finechem UNIVAR 310
O-acetylsalicylic Acid Sigma-Aldrich A5376
phenethylamine Sigma-Aldrich 241008
phenolphthalein AJAX Finechem LABCHEM 368 Acute toxicity
potassium carbonate Chem-Supply PA021 AR, anhydrous
sodium carbonate Chem-Supply SA099 AR, anhydrous
sodium chloride Rowe Scientific CC10363
starch AJAX Finechem UNILAB 1254 soluble
stearic acid AJAX Finechem UNILAB 1255
sucrose AJAX Finechem UNIVAR 530
tartaric acid AJAX Finechem UNIVAR 537 (+)
Name Company Catalog Number Comments
Household products
artificial sweetener ALDI Be Light n/a Contains aspartame
brown sugar CSR n/a
icing sugar CSR n/a
caster sugar CSR n/a
paracetamol tablet Panadol n/a
protein powder Aussie Bodies ProteinFX n/a
self-raising Woolworths Australia Homebrand n/a
plain flour Woolworths Australia Homebrand n/a
Name Company Catalog Number Comments
Reference compounds controlled or illegal substances
Cathinone-type substances
1-(4-methoxyphenyl)-2-(1-pyrrolidinyl)-1-propanone HCl (MOPPP) Australian Government National Measurement Institute (NMI) D1024 Acute toxicity potential
1-phenyl-2-methylamino-pentan-1-one HCl Lipomed PTD-1507-HC Acute toxicity potential
2,3-dimethylmethcathinone HCl (2,3-DMMC) Chiron Chemicals 10970.12 Acute toxicity potential
2,4,5-trimethylmethcathinone HCl (2,4,5-TMMC) Chiron Chemicals 10927.13 Acute toxicity potential
2,4-dimethylmethcathinone HCl (2,4-DMMC) Chiron Chemicals 10971.12 Acute toxicity potential
2-benzylamino-1-(3,4-methylenedioxyphenyl)-1-butanone HCl (BMDB) Chiron Chemicals 10925.18 Acute toxicity potential
2-fluoromethcathinone HCl (2-FMC) LGC Standards LGCFOR 1275.64 Acute toxicity potential
2-methylmethcathinone HCl (2-MMC) LGC Standards LGCFOR 1387.02 Acute toxicity potential
3,4-methylenedioxy-α-pyrrolidinobutiophenone (MDPBP) HCl Australian Government National Measurement Institute (NMI) D973 Acute toxicity potential
3,4-dimethylmethcathinone HCl (DMMC) Australian Government National Measurement Institute (NMI) D962 Acute toxicity potential
3,4-methylenedioxymethcathinone HCl (MDMC) Australian Government National Measurement Institute (NMI) D942 Acute toxicity potential
3,4-methylenedioxy-N,N-dimethylcathinone HCl Australian Government National Measurement Institute (NMI) D977 Acute toxicity potential
3,4-methylenedioxypyrovalerone HCl (MDPV) Australian Government National Measurement Institute (NMI) D951b Acute toxicity potential
3-bromomethcathinone HCl (3-BMC) Australian Government National Measurement Institute (NMI) D1035 Acute toxicity potential
3-fluoromethcathinone HCl (3-FMC) Australian Government National Measurement Institute (NMI) D947b Acute toxicity potential
3-methylmethcathinone HCl (3-MMC) LGC Standards LGCFOR 1387.03 Acute toxicity potential
4-bromomethcathinone HCl (4-BMC) LGC Standards LGCFOR 1387.11 Acute toxicity potential
4-fluoromethcathinone HCl Australian Government National Measurement Institute (NMI) D969 Acute toxicity potential
4-methoxymethcathinone HCl Australian Government National Measurement Institute (NMI) D952 Acute toxicity potential
4-methylethylcathinone HCl Australian Government National Measurement Institute (NMI) D968 Acute toxicity potential
4-methylmethcathinone HCl (4-MMC) Australian Government National Measurement Institute (NMI) D937b Acute toxicity potential
4-methyl-N-benzylcathinone HCl (4-MBC) Australian Government National Measurement Institute (NMI) D1026 Acute toxicity potential
4-methyl-pyrrolidinopropiophenone HCl Australian Government National Measurement Institute (NMI) D964 Acute toxicity potential
4-methyl-α-pyrrolidinobutiophenone HCl Australian Government National Measurement Institute (NMI) D974 Acute toxicity potential
cathinone HCl (bk-amphetamine) Australian Government National Measurement Institute (NMI) D929 Acute toxicity potential
dibutylone HCl (bk-DMBDB) Australian Government National Measurement Institute (NMI) D1027 Acute toxicity potential
iso-ethcathinone HCl Chiron Chemicals 10922.11 Acute toxicity potential
methcathinone HCl Australian Government National Measurement Institute (NMI) D724 Acute toxicity potential
methylenedioxy-α-pyrrolidinopropiophenone HCl Australian Government National Measurement Institute (NMI) D960 Acute toxicity potential
N,N-diethylcathinone HCl Australian Government National Measurement Institute (NMI) D957 Acute toxicity potential
N,N-dimethylcathinone HCl Australian Government National Measurement Institute (NMI) D958 Acute toxicity potential
naphthylpyrovalerone HCl (naphyrone) Australian Government National Measurement Institute (NMI) D981 Acute toxicity potential
N-ethyl-3,4-methylenedioxycathinone HCl Australian Government National Measurement Institute (NMI) D959 Acute toxicity potential
N-ethylbuphedrone HCl Australian Government National Measurement Institute (NMI) D1013 Acute toxicity potential
N-ethylcathinone HCl Australian Government National Measurement Institute (NMI) D938b Acute toxicity potential
pentylone HCl Australian Government National Measurement Institute (NMI) D992 Acute toxicity potential
pyrovalerone HCl Australian Government National Measurement Institute (NMI) D985 Acute toxicity potential
α-dimethylaminobutyrophenone HCl Australian Government National Measurement Institute (NMI) D1011 Acute toxicity potential
α-dimethylaminopentiophenone HCl Australian Government National Measurement Institute (NMI) D1006 Acute toxicity potential
α-ethylaminopentiophenone HCl Australian Government National Measurement Institute (NMI) D1005 Acute toxicity potential
α-pyrrolidinobutiophenone HCl (α-PBP) Australian Government National Measurement Institute (NMI) D1012 Acute toxicity potential
α-pyrrolidinopentiophenone HCl Australian Government National Measurement Institute (NMI) D986b Acute toxicity potential
α-pyrrolidinopropiophenone HCl Australian Government National Measurement Institute (NMI) D956 Acute toxicity potential
β-keto-N-methyl-3,4-benzodioxyolylbutanamine HCl (bk-MBDB) Australian Government National Measurement Institute (NMI) D948 Acute toxicity potential
Name Company Catalog Number Comments
Other substances
(-)-ephedrine HCl Australian Government National Measurement Institute (NMI) M924 Acute toxicity potential
(-)-methylephedrine HCl Australian Government National Measurement Institute (NMI) M243 Acute toxicity potential
(+)-cathine HCl Australian Government National Measurement Institute (NMI) M297 Acute toxicity potential
(+/-)- 3,4-methylenedioxyamphetamine HCl (MDA) Australian Government National Measurement Institute (NMI) D842 Acute toxicity potential
(+/-)- N-methyl-3,4-methylenedioxyamphetamine HCl (MDMA) Australian Government National Measurement Institute (NMI) D792c Acute toxicity potential
(+/-)-methamphetamine HCl Australian Government National Measurement Institute (NMI) D816e Acute toxicity potential
(+/-)-N-ethyl-3,4-methylenedioxyamphetamine HCl (MDEA) Australian Government National Measurement Institute (NMI) D739c Acute toxicity potential
(+/-)-N-methyl-1-(3,4-methylenedioxyphenyl)-2-butylamine HCl Australian Government National Measurement Institute (NMI) D450a Acute toxicity potential
(+/-)-phenylpropanolamine HCl Australian Government National Measurement Institute (NMI) M296 Acute toxicity potential
(2S*,3R*)-2-methyl-3-[3,4-(methylenedioxy)phenyl]glycidic acid methyl ester Australian Government National Measurement Institute (NMI) D903 Acute toxicity potential
1-(3-chlorophenyl)piperazine HCl (mCPP) Australian Government National Measurement Institute (NMI) D907 Acute toxicity potential
1-[3-(trifluoromethyl)phenyl]piperazine HCl (TFMPP) Australian Government National Measurement Institute (NMI) D906 Acute toxicity potential
1-benzylpiperazine HCl (BZP) Australian Government National Measurement Institute (NMI) D905 Acute toxicity potential
2,5-dimethoxy-4-iodophenylethylamine HCl Australian Government National Measurement Institute (NMI) D922 Acute toxicity potential
2,5-dimethoxy-4-methylamphetamine HCl (DOM) Australian Government National Measurement Institute (NMI) D470b Acute toxicity potential
2,5-dimethoxy-4-propylthio-phenylethylamine HCl Australian Government National Measurement Institute (NMI) D919 Acute toxicity potential
2,5-dimethoxyamphetamine HCl Australian Government National Measurement Institute (NMI) D749 Acute toxicity potential
2-bromo-4-methylpropiophenone Synthesised in-house n/a Acute toxicity potential
2-fluoroamphetamine HCl Australian Government National Measurement Institute (NMI) D946 Acute toxicity potential
2-fluoromethamphetamine HCl Australian Government National Measurement Institute (NMI) D933 Acute toxicity potential
3,4-dimethoxyamphetamine HCl Australian Government National Measurement Institute (NMI) D453b Acute toxicity potential
3,4-methylenedioxyphenyl-2-propanone (MDP2P) Australian Government National Measurement Institute (NMI) D810b Acute toxicity potential
4-bromo-2,5-dimethoxyamphetamine HCl Australian Government National Measurement Institute (NMI) D396b Acute toxicity potential
4-bromo-2,5-dimethoxyphenethylamine HCl Australian Government National Measurement Institute (NMI) D758b Acute toxicity potential
4-fluoroamphetamine HCl Australian Government National Measurement Institute (NMI) D943b Acute toxicity potential
4-fluorococaine HCl Australian Government National Measurement Institute (NMI) D854b Acute toxicity potential
4-fluoromethamphetamine HCl Australian Government National Measurement Institute (NMI) D934 Acute toxicity potential
4-hydroxyamphetamine HCl Australian Government National Measurement Institute (NMI) D824b Acute toxicity potential
4-methoxyamphetamine HCl (PMA) Australian Government National Measurement Institute (NMI) D756 Acute toxicity potential
4-methoxymethamphetamine HCl (PMMA) Australian Government National Measurement Institute (NMI) D908b Acute toxicity potential
4-methylmethamphetamine HCl Australian Government National Measurement Institute (NMI) D963 Acute toxicity potential
4-methylpropiophenone Sigma-Aldrich 517925 Acute toxicity potential
5-methoxy-N,N-diallyltryptamine Australian Government National Measurement Institute (NMI) D954 Acute toxicity potential
amphetamine sulphate Australian Government National Measurement Institute (NMI) D420d Acute toxicity potential
cocaine HCl Australian Government National Measurement Institute (NMI) D747b Acute toxicity potential
dimethamphetamine (DMA) Australian Government National Measurement Institute (NMI) D693d Acute toxicity potential
gamma-hydroxy butyrate Australian Government National Measurement Institute (NMI) D812b Acute toxicity potential
heroin HCl LGC Standards LGCFOR 0037.20 Acute toxicity potential
ketamine HCl Australian Government National Measurement Institute (NMI) D686b Acute toxicity potential
methoxetamine HCl Australian Government National Measurement Institute (NMI) D989 Acute toxicity potential
methylamine HCl Sigma-Aldrich M0505 Acute toxicity potential
phencyclidine HCl Australian Government National Measurement Institute (NMI) D748 Acute toxicity potential
phentermine HCl Australian Government National Measurement Institute (NMI) D781 Acute toxicity potential
triethylamine Sigma-Aldrich T0886 Acute toxicity, corrosive, flammable
Name Company Catalog Number Comments
Equipment
12-well porcelain spot plates HomeScienceTools CE-SPOTP12
96-well microplates Greiner Bio-One 650201
Hot plate Industrial Equipment and Control Pty Ltd. CH1920 (Scientrific)
100 mL glass volumetric flasks Duran 24 678 25 54
Soda lime glass Pasteur pipettes Marienfeld-Superior 3233050 230 mm length

DOWNLOAD MATERIALS LIST

References

  1. Martin, J. Drugs on the Dark Net: How Cryptomarkets are Transforming the Global Trade in Illicit Drugs. Palgrave Macmillan UK. (2014).
  2. Beharry, S., Gibbons, S. An overview of emerging and new psychoactive substances in. the United Kingdom. Forensic Sci. Int. 267, 25-34 (2016).
  3. United Nations Office on Drugs and Crime (UNODC). World Drug Report 2017. United Nations publication. (2017).
  4. Australian Criminal Intelligence Commission (ACIC). Illicit Drug Data Report 2014-2015. Commonwealth of Australia, Canberra. (2016).
  5. United Nations Office on Drugs and Crime (UNODC). World Drug Report 2016. United Nations publication. (2016).
  6. Chatwin, C., Measham, F., O'Brien, K., Sumnall, H. New drugs, new directions? Research priorities for new psychoactive substances and human enhancement drugs. Int. J. Drug Policy. 40, 1-5 (2017).
  7. Reuter, P., Pardo, B. New psychoactive substances: Are there any good options for regulating new psychoactive substances? Int. J. Drug Policy. 40, 117-122 (2017).
  8. Elie, M. P., Elie, L. E., Baron, M. G. Keeping pace with NPS releases: fast GC-MS screening of legal high products. Drug Test. Anal. 5, (5), 281-290 (2013).
  9. Strano Rossi, S., et al. An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Sp. 28, (17), 1904-1916 (2014).
  10. Jones, L. E., et al. Infrared and Raman screening of seized novel psychoactive substances: a large scale study of >200 samples. Analyst. 141, (3), 902-909 (2016).
  11. Lesiak, A. D., et al. Direct analysis in real time mass spectrometry (DART-MS) of "bath salt" cathinone drug mixtures. Analyst. 138, (12), 3424-3432 (2013).
  12. Brown, H., Oktem, B., Windom, A., Doroshenko, V., Evans-Nguyen, K. Direct Analysis in Real Time (DART) and a portable mass spectrometer for rapid identification of common and designer drugs on-site. Forensic Chem. (Supplement C), 66-73 (2016).
  13. Bruno, A. M., Cleary, S. R., O'Leary, A. E., Gizzi, M. C., Mulligan, C. C. Balancing the utility and legality of implementing portable mass spectrometers coupled with ambient ionization in routine law enforcement activities. Anal Methods-UK. 9, (34), 5015-5022 (2017).
  14. United Nations Office on Drugs and Crime (UNODC). Recommended methods for the identification and analysis of amphetamine, methamphetamine and their ring-substituted analogues in seized materials. United Nations. New York. (2006).
  15. Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG). Vol. 7.1. United States Department of Justice, USA. (2016).
  16. United Nations Office on Drugs and Crime (UNODC). Recommended methods for the identification and analysis of synthetic cathinones in seized materials. United Nations. New York. (2015).
  17. Philp, M., Shimmon, R., Tahtouh, M., Fu, S. Development and validation of a presumptive color spot test method for the detection of synthetic cathinones in seized illicit materials. Forensic Chem. 1, 39-50 (2016).
  18. Al-Obaid, A. M., Al-Tamrah, S. A., Aly, F. A., Alwarthan, A. A. Determination of (S)(−)-cathinone by spectrophotometric detection. J Pharmaceut Biomed. 17, (2), 321-326 (1998).
  19. Namera, A., Kawamura, M., Nakamoto, A., Saito, T., Nagao, M. Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicol. 33, (2), 175-194 (2015).
  20. Isaacs, R. C. A. A structure-reactivity relationship driven approach to the identification of a color test protocol for the presumptive indication of synthetic cannabimimetic drugs of abuse. Forensic Sci. Int. 242, 135-141 (2014).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics