Real-Time Pressure-Volume Analysis of Acute Myocardial Infarction in Mice

This article has been accepted and is currently in production

Abstract

Acute myocardial infarction can lead to acute heart failure and cardiogenic shock. The evaluation of hemodynamics is critical for the evaluation of any potential therapeutic approach directed against acute left ventricular (LV) dysfunction. Current imaging modalities (e.g., echocardiography and magnetic resonance imaging) have several limitations since data on LV pressure cannot directly be measured. LV catheterization in mice undergoing coronary artery occlusion could serve as a novel method for a real-time evaluation of LV function.

At the beginning of the procedure, mice were anesthetized followed by endotracheal intubation. For LV catheterization, the right carotid artery was exposed via middle-neck incision. The catheter was introduced and placed into the LV cavity. Left thoracotomy was conducted and the left main coronary artery (LCA) was ligated. To induce reperfusion, the suture was released after 45 min. Pressure-volume data was recorded at all times.

Ligation of the LCA caused a decrease in LV systolic function as evidenced by a 30% reduction in stroke volume, LV ejection fraction (EF) and cardiac output. Maximum dP/dt as a parameter for LV contractility was also significantly reduced and diastolic function was severely impaired (minimum dP/dt -40%). Reperfusion over a period of 20 min did not lead to a complete recovery of LV function.

Real-time pressure-volume analysis served as a valid procedure for monitoring cardiac function during acute myocardial infarction in mice. Maintaining stable anesthesia and a standardized surgical approach was crucial to ensure valid results. As the early phase of acute myocardial infarction is critical for morbidity and mortality, the delineated method could be beneficial for preclinical evaluation of new strategies for cardioprotection.