Induction and Phenotyping of Acute Right Heart Failure in a Large Animal Model of Chronic Thromboembolic Pulmonary Hypertension

This article has been accepted and is currently in production

Abstract

The development of acute right heart failure (ARHF) in the context of chronic pulmonary hypertension (PH) is associated with poor short-term outcomes. The morphological and functional phenotyping of the right ventricle is of particular importance in the context of hemodynamic compromise in patients with ARHF. Here, we describe a method to induce ARHF in a previously described large animal model of chronic PH, and to phenotype, dynamically, right ventricular function using the gold standard method (i.e., pressure-volume PV loops) and with a non-invasive clinically available method (i.e., echocardiography). Chronic PH is first induced in pigs by left pulmonary artery ligation and right lower lobe embolism with biological glue once a week for 5 weeks. After 16 weeks, ARHF is induced by successive volume loading using saline followed by iterative pulmonary embolism until the ratio of the systolic pulmonary pressure over systemic pressure reaches 0.9 or until the systolic systemic pressure decreases below 90 mmHg. Hemodynamics are restored with dobutamine infusion (from 2.5 µg/kg/min to 7.5 µg/kg/min). PV-loops and echocardiography are performed during each condition. Each condition requires around 40 minutes for induction, hemodynamic stabilization and data acquisition. Out of 9 animals, 2 died immediately after pulmonary embolism and 7 completed the protocol, which illustrates the learning curve of the model. The model induced a 3-fold increase in mean pulmonary artery pressure. The PV-loop analysis showed that ventriculo-arterial coupling was preserved after volume loading, decreased after acute pulmonary embolism and was restored with dobutamine. Echocardiographic acquisitions allowed to quantify right ventricular parameters of morphology and function with good quality. We identified right ventricular ischemic lesions in the model. The model can be used to compare different treatments or to validate non-invasive parameters of right ventricular morphology and function in the context of ARHF.