Establishing In Situ Closed Circuit Perfusion of Lower Abdominal Organs and Hind Limbs in Mice

* These authors contributed equally
This article has been accepted and is currently in production

Abstract

Ex vivo perfusion is an important physiological tool to study the function of isolated organs (e.g. liver, kidneys). At the same time, due to the small size of mouse organs, ex vivo perfusion of bone, bladder, skin, prostate, and reproductive organs is challenging or not feasible. Here, we report for the first time an in situ lower body perfusion circuit in mice that includes the above tissues, but bypasses the main clearance organs (kidney, liver, and spleen). The circuit is established by cannulating the abdominal aorta and inferior vena cava above the iliac artery and vein and cauterizing peripheral blood vessels. Perfusion is performed via a peristaltic pump with perfusate flow maintained for up to 2 h. In situ staining with fluorescent lectin and Hoechst solution confirmed that the microvasculature was successfully perfused. This mouse model can be a very useful tool for studying pathological processes as well as mechanisms of drug delivery, migration/metastasis of circulating tumor cells into/from the tumor, and interactions of immune system with perfused organs and tissues.