化验粘附和酿酒酵母琼脂入侵

Biology

Your institution must subscribe to JoVE's Biology section to access this content.

Fill out the form below to receive a free trial or learn more about access:

Welcome!

Enter your email below to get your free 10 minute trial to JoVE!





By clicking "Submit", you agree to our policies.

 

Summary

我们描述了酵母的附着力和琼脂作为衡量侵入和假菌丝分化入侵的定性分析。这个简单的实验,可用于评估各种突变体的侵入的表型,以及环境因素的影响,对酵母分化的信号通路。

Cite this Article

Copy Citation | Download Citations

Guldal, C. G., Broach, J. Assay for Adhesion and Agar Invasion in S. cerevisiae. J. Vis. Exp. (1), e64, doi:10.3791/64 (2006).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

酵母菌是在自然生物膜发现,许多微生物殖民表面。在人工环境,如人造物体表面,生物膜可以减少工业生产力,破坏结构,威胁着人类的生活。 1-3另一方面,利用生物膜的力量可以帮助清洁环境,并产生可持续的能源。 4-8酿酒酵母拓殖表面,并参与复杂的生物膜的能力主要是通过各种信号转导通路,并在这个有机体的环境因素引发的分化程序的重新发现被忽略,直到。 9,10使用酿酒酵母作为一种模式生物,理解的互动和衔接的信号转导通路的Ras - PKA,Kss1 MAPK和Hog1渗透压的途径,如迅速放置在酿酒酵母中生物膜的交界处,持续关注生物学和信号转导研究。 11-20为此,酵母细胞分化成长,胶粘剂,假菌丝细丝成为一个方便读数在各种环境变化的信号转导通路的激活。然而,丝是一个复杂的表型,这使得它的化验就好像它是一个简单的表型误导的集合。在过去的十年中,成功地采用了一些分析,从细菌生物膜研究酵母的研究,如垫形成实验测量软琼脂和结晶紫染色法,定量测量细胞表面坚持殖民地蔓延,。 12日,21然而,有一些发达国家的检测,定性评估的粘合剂和侵入表型酵母琼脂混乱。在这里,我们提出了一个简单和可靠的方法评估酵母菌株的粘合剂和侵入性的质量易于理解的步骤,以隔离入侵评估附着力评估。我们从以往的研究,10,16中采用的方法,包括生长的细胞在液体介质和电镀差大点,然后用清水洗净,以评估附着力和琼脂表面的细胞完全擦掉,以评估入侵到生长的营养条件琼脂。我们消除裸奔到琼脂细胞的需要,从而影响到琼脂细胞的侵袭。在一般情况下,我们观察到侵入单倍体菌株琼脂胶,但不是所有的粘合剂株可侵入琼脂培养基。我们的方法可以用来结合其他实验中,要认真剖析酵母的信号转导,分化,群体感应,和生物膜形成的分化步骤和要求。

Protocol

  1. 将200ul合成介质板所需的饥饿条件(SC SC 2%和0.2%的葡萄糖与葡萄糖,例如)的兴趣不断增长的文化,如果文化的密度过彼此不同,调整细胞计数每200ul文化所以每下降大约相同数量的细胞。
  2. 请一定要保持板块的下跌是文化的记录。
  3. 保持板盖半掩,留在室温或在30 ° C,直到滴干。
  4. 封口膜和保鲜膜(可选)的密封板和留在30℃为3-7天。
  5. 文件(通过扫描,数字图片等)平板上的细胞的生长
  6. 用高压水(最好是去离子水)的琼脂表面清洗细胞分钟服用琼脂的照顾,不取消和改变方向。
  7. 获取摆脱攻板纸巾,让他们干多余的水分。
  8. 一旦板每块板的干的附着力(扫描或数码照片)
  9. 戴手套的手指,轻轻揉搓细胞形成的自来水琼脂表面下约一分钟。
  10. 像以前那样干板。
  11. 如果使用解剖范围,之前取出放在显微镜平台上板的针。
  12. 与10倍或40倍放大倍率的文件入侵。确保把重点放在每个圆圈的中间部分,将过于拥挤的边缘,看到单个细胞形态。边缘可以表明丝状增长水平,并可以记录以供将来参考。扫描或采取整板的数码照片也可以是有益的。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

酵母细胞显示各种分化的模式,根据营养可用性和环境条件,包括饥饿和压力的条件下,根据各种营养素强调的细丝,和絮凝孢子形成。各种酵母菌,包括酵母和白色念珠菌,也可以发现在不同的微生物形成的生物膜。虽然有一些丝和入侵行为的相关性,目前尚不清楚究竟如何丝可能会导致表面和组织的入侵和定植。酵母可以肯定会发现在营养和丝状的形式在自然界中生物膜,以及威胁人类健康的地方,如导管和感染的人体器官。 10-13为了了解利用酵母菌感染的动物和参与有害和有益的生物膜信号途径,我们必须开发方便和可靠的检测。在这里,我们开发了一个分析,从现有的粘附和入侵检测酵母通过,这使我们能够定性确定在各种条件下的酵母菌株和突变体的粘合剂和侵入表型。这里介绍的检测,消除裸奔到酵母细胞中的琼脂,裸奔琼脂表面的单纯行动改变酵母的侵入和粘合剂素质的要求。特别是通过显微镜侵入细胞的数码成像允许入侵和粘连程度半定量评估。侵入和粘合剂细胞等的检测是免费的单细胞琼脂入侵检测,9只实验室开发,可适应做日久实验。

Subscription Required. Please recommend JoVE to your librarian.

Acknowledgements

我们要感谢他们的真知灼见丽莎Schneper和卡特琳Duevel发展这个实验。

Materials

Name Type Company Catalog Number Comments
Moticam 350 Camera Motic discontinued (new model: Moticam 352) A relatively cheap camera that attaches to eye pieces of microscopes and captures digital images for PC or Mac.

DOWNLOAD MATERIALS LIST

References

  1. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., Lappin-Scott, H. M. Microbial biofilms. Annu Rev Microbiol. 49, 711-745 (1995).
  2. Elortondo, F. J. P., Salmeron, J., Albisu, M., Casas, C. Biofilms in the food industry. Food Science and Technology International. 5, 25-30 (1999).
  3. Keinanen, M. M., Martikainen, P. J., Kontro, M. H. Microbial community structure and biomass in developing drinking water biofilms. Can J Microbiol. 50, 183-191 (2004).
  4. Biffinger, J. C., Pietron, J., Ray, R., Little, B., Ringeisen, B. R. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron. 22, 1672-1679 (2007).
  5. Kim, G. T. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol. 101, 698-710 (2006).
  6. Kim, J. R., Jung, S. H., Regan, J. M., Logan, B. E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol. 98, 2568-2577 (2007).
  7. Picioreanu, C., Head, I. M., Katuri, K. P., Loosdrecht, M. C. van, Scott, K. A computational model for biofilm-based microbial fuel cells. Water Res. 41, 2921-2940 (2007).
  8. Singh, R., Paul, D., Jain, R. K. Biofilms: implications in bioremediation. Trends in Microbiology. 14, 389-397 (2006).
  9. Cullen, P. J., Sprague, G. F. Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A. 97, 13619-13224 (2000).
  10. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., Fink, G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 68, 1077-1090 (1992).
  11. Blankenship, J. R., Mitchell, A. P. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 9, 588-594 (2006).
  12. Reynolds, T. B., Fink, G. R. Bakers' yeast, a model for fungal biofilm formation. Science. 291, 878-881 (2001).
  13. Verstrepen, K. J., Klis, F. M. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 60, 5-15 (2006).
  14. Liu, H., Styles, C. A., Fink, G. R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 262, 1741-1744 (1993).
  15. Madhani, H. D., Fink, G. R. The control of filamentous differentiation and virulence in fungi. Trends Cell Biol. 8, 348-353 (1998).
  16. Mosch, H. U., Kubler, E., Krappmann, S., Fink, G. R., Braus, G. H. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell. 10, 1325-1335 (1999).
  17. Mosch, H. U., Roberts, R. L., Fink, G. R. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 93, 5352-5356 (1996).
  18. Pan, X., Heitman, J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 19, 4874-4887 (1999).
  19. Roberts, R. L., Fink, G. R. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8, 2974-2985 (1994).
  20. Robertson, L. S., Fink, G. R. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 95, 13783-13787 (1998).
  21. Reynolds, T. B., Jansen, A., Peng, X., Fink, G. R. Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell. (2007).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics