JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Can erythropoietin be used to prevent brain damage in cerebral malaria?
Trends Parasitol.
PUBLISHED: 04-15-2009
Erythropoietin (Epo) modulates the survival of developing erythroid cells and the production of new erythrocytes in the bone marrow and is a key molecule in the adaptation to hypoxia and anaemia. Epo receptors have been found to be widely expressed on non-haematopoietic cells, and Epo has been shown to have diverse actions (in particular, preventing ischaemic damage to tissues of the central nervous system). Recently, Epo has been shown to improve the outcome in a murine model of malaria, and high plasma levels of Epo in children with cerebral malaria were associated with a better outcome. Here, we review the biological importance of Epo, its mechanisms of action and the rationale for the proposed use of Epo as an adjunct treatment in cerebral malaria.
Authors: Dumizulu L. Tembo, Jacqui Montgomery, Alister G. Craig, Samuel C. Wassmer.
Published: 05-16-2013
ABSTRACT
P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ability to modify the surface of the infected erythrocyte by exporting surface antigens with varying adhesive properties onto the RBC membrane. This allows the sequestration of pRBC in multiple tissues and organs by adhesion to endothelial cells lining the microvasculature of post-capillary venules 1. By doing so, the mature forms of the parasite avoid splenic clearance of the deformed infected erythrocytes 2 and restrict their environment to a more favorable low oxygen pressure 3. As a consequence of this sequestration, it is only immature asexual parasites and gametocytes that can be detected in peripheral blood. Cytoadherence and sequestration of mature pRBC to the numerous host receptors expressed on microvascular beds occurs in severe and uncomplicated disease. However, several lines of evidence suggest that only specific adhesive phenotypes are likely to be associated with severe pathological outcomes of malaria. One example of such specific host-parasite interactions has been demonstrated in vitro, where the ability of intercellular adhesion molecule-1 to support binding of pRBC with particular adhesive properties has been linked to development of cerebral malaria 4,5. The placenta has also been recognized as a site of preferential pRBC accumulation in malaria-infected pregnant women, with chondrotin sulphate A expressed on syncytiotrophoblasts that line the placental intervillous space as the main receptor 6. Rosetting of pRBC to uninfected erythrocytes via the complement receptor 1 (CD35)7,8 has also been associated with severe disease 9. One of the most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps 10. Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM 11. In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian 12 and Mozambican patients 13, (although not in Malian 14). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay 15. Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.
20 Related JoVE Articles!
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
50418
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
51900
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
50189
Play Button
2-Vessel Occlusion/Hypotension: A Rat Model of Global Brain Ischemia
Authors: Thomas H. Sanderson, Joseph M. Wider.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cardiac arrest followed by resuscitation often results in dramatic brain damage caused by ischemia and subsequent reperfusion of the brain. Global brain ischemia produces damage to specific brain regions shown to be highly sensitive to ischemia 1. Hippocampal neurons have higher sensitivity to ischemic insults compared to other cell populations, and specifically, the CA1 region of the hippocampus is particularly vulnerable to ischemia/reperfusion 2. The design of therapeutic interventions, or study of mechanisms involved in cerebral damage, requires a model that produces damage similar to the clinical condition and in a reproducible manner. Bilateral carotid vessel occlusion with hypotension (2VOH) is a model that produces reversible forebrain ischemia, emulating the cerebral events that can occur during cardiac arrest and resuscitation. We describe a model modified from Smith et al. (1984) 2, as first presented in its current form in Sanderson, et al. (2008) 3, which produces reproducible injury to selectively vulnerable brain regions 3-6. The reliability of this model is dictated by precise control of systemic blood pressure during applied hypotension, the duration of ischemia, close temperature control, a specific anesthesia regimen, and diligent post-operative care. An 8-minute ischemic insult produces cell death of CA1 hippocampal neurons that progresses over the course of 6 to 24 hr of reperfusion, while less vulnerable brain regions are spared. This progressive cell death is easily quantified after 7-14 days of reperfusion, as a near complete loss of CA1 neurons is evident at this time. In addition to this brain injury model, we present a method for CA1 damage quantification using a simple, yet thorough, methodology. Importantly, quantification can be accomplished using a simple camera-mounted microscope, and a free ImageJ (NIH) software plugin, obviating the need for cost-prohibitive stereology software programs and a motorized microscopic stage for damage assessment.
Medicine, Issue 76, Biomedical Engineering, Neurobiology, Neuroscience, Immunology, Anatomy, Physiology, Cardiology, Brain Ischemia, ischemia, reperfusion, cardiac arrest, resuscitation, 2VOH, brain injury model, CA1 hippocampal neurons, brain, neuron, blood vessel, occlusion, hypotension, animal model
50173
Play Button
Isolation and Analysis of Brain-sequestered Leukocytes from Plasmodium berghei ANKA-infected Mice
Authors: Victoria Ryg-Cornejo, Lisa J. Ioannidis, Diana S. Hansen.
Institutions: The Walter and Eliza Hall Institute of Medical Research.
We describe a method for isolation and characterization of adherent inflammatory cells from brain blood vessels of P. berghei ANKA-infected mice. Infection of susceptible mouse-strains with this parasite strain results in the induction of experimental cerebral malaria, a neurologic syndrome that recapitulates certain important aspects of Plasmodium falciparum-mediated severe malaria in humans 1,2 . Mature forms of blood-stage malaria express parasitic proteins on the surface of the infected erythrocyte, which allows them to bind to vascular endothelial cells. This process induces obstructions in blood flow, resulting in hypoxia and haemorrhages 3 and also stimulates the recruitment of inflammatory leukocytes to the site of parasite sequestration. Unlike other infections, i.e neutrotopic viruses4-6, both malaria-parasitized red blood cells (pRBC) as well as associated inflammatory leukocytes remain sequestered within blood vessels rather than infiltrating the brain parenchyma. Thus to avoid contamination of sequestered leukocytes with non-inflammatory circulating cells, extensive intracardial perfusion of infected-mice prior to organ extraction and tissue processing is required in this procedure to remove the blood compartment. After perfusion, brains are harvested and dissected in small pieces. The tissue structure is further disrupted by enzymatic treatment with Collagenase D and DNAse I. The resulting brain homogenate is then centrifuged on a Percoll gradient that allows separation of brain-sequestered leukocytes (BSL) from myelin and other tissue debris. Isolated cells are then washed, counted using a hemocytometer and stained with fluorescent antibodies for subsequent analysis by flow cytometry. This procedure allows comprehensive phenotypic characterization of inflammatory leukocytes migrating to the brain in response to various stimuli, including stroke as well as viral or parasitic infections. The method also provides a useful tool for assessment of novel anti-inflammatory treatments in pre-clinical animal models.
Immunology, Issue 71, Infection, Infectious Diseases, Pathology, Hematology, Molecular Biology, Cellular Biology, Mouse, Brain, Intravascular inflammation, leukocytes, Plasmodium berghei, parasite, malaria, animal model, flow cytometry
50112
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
52115
Play Button
Efficient iPS Cell Generation from Blood Using Episomes and HDAC Inhibitors
Authors: Jesse J. Hubbard, Spencer K. Sullivan, Jason A. Mills, Brian J. Hayes, Beverly J. Torok-Storb, Aravind Ramakrishnan.
Institutions: Fred Hutchinson Cancer Research Center, The Children's Hospital of Philadelphia, The Children's Hospital of Philadelphia.
This manuscript illustrates a protocol for efficiently creating integration-free human induced pluripotent stem cells (iPSCs) from peripheral blood using episomal plasmids and histone deacetylase (HDAC) inhibitors. The advantages of this approach include: (1) the use of a minimal amount of peripheral blood as a source material; (2) nonintegrating reprogramming vectors; (3) a cost effective method for generating vector free iPSCs; (4) a single transfection; and (5) the use of small molecules to facilitate epigenetic reprogramming. Briefly, peripheral blood mononuclear cells (PBMCs) are isolated from routine phlebotomy samples and then cultured in defined growth factors to yield a highly proliferative erythrocyte progenitor cell population that is remarkably amenable to reprogramming. Nonintegrating, nontransmissible episomal plasmids expressing OCT4, SOX2, KLF4, MYCL, LIN28A, and a p53 short hairpin (sh)RNA are introduced into the derived erythroblasts via a single nucleofection. Cotransfection of an episome that expresses enhanced green fluorescent protein (eGFP) allows for easy identification of transfected cells. A separate replication-deficient plasmid expressing Epstein-Barr nuclear antigen 1 (EBNA1) is also added to the reaction mixture for increased expression of episomal proteins. Transfected cells are then plated onto a layer of irradiated mouse embryonic fibroblasts (iMEFs) for continued reprogramming. As soon as iPSC-like colonies appear at about twelve days after nucleofection, HDAC inhibitors are added to the medium to facilitate epigenetic remodeling. We have found that the inclusion of HDAC inhibitors routinely increases the generation of fully reprogrammed iPSC colonies by 2 fold. Once iPSC colonies exhibit typical human embryonic stem cell (hESC) morphology, they are gently transferred to individual iMEF-coated tissue culture plates for continued growth and expansion.
Cellular Biology, Issue 92, Induced pluripotent stem cells, iPSC, iPSC generation, human, HDAC inhibitors, histone deacetylase inhibitors, reprogramming, episomes, integration-free
52009
Play Button
High Yield Purification of Plasmodium falciparum Merozoites For Use in Opsonizing Antibody Assays
Authors: Danika L. Hill, Emily M. Eriksson, Louis Schofield.
Institutions: Walter and Eliza Hall Institute of Medical Research, University of Melbourne.
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts.  Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.  
Immunology, Issue 89, Parasitic Diseases, malaria, Plasmodium falciparum, hemozoin, antibody, Fc Receptor, opsonization, merozoite, phagocytosis, THP-1
51590
Play Button
Mouse Fetal Liver Culture System to Dissect Target Gene Functions at the Early and Late Stages of Terminal Erythropoiesis
Authors: Baobing Zhao, Yang Mei, Jing Yang, Peng Ji.
Institutions: Northwestern University.
Erythropoiesis involves a dynamic process that begins with committed erythroid burst forming units (BFU-Es) followed by rapidly dividing erythroid colony forming units (CFU-Es). After CFU-Es, cells are morphologically recognizable and generally termed terminal erythroblasts. One of the challenges for the study of terminal erythropoiesis is the lack of experimental approaches to dissect gene functions in a chronological manner. In this protocol, we describe a unique strategy to determine gene functions in the early and late stages of terminal erythropoiesis. In this system, mouse fetal liver TER119 (mature erythroid cell marker) negative erythroblasts were purified and transduced with exogenous expression of cDNAs or small hairpin RNAs (shRNAs) for the genes of interest. The cells were subsequently cultured in medium containing growth factors other than erythropoietin (Epo) to maintain their progenitor stage for 12 hr while allowing the exogenous cDNAs or shRNAs to express. The cells were changed to Epo medium after 12 hr to induce cell differentiation and proliferation while the exogenous genetic materials were already expressed. This protocol facilitates analysis of gene functions in the early stage of terminal erythropoiesis. To study late stage terminal erythropoiesis, cells were immediately cultured in Epo medium after transduction. In this way, the cells were already differentiated to the late stage of terminal erythropoiesis when the transduced genetic materials were expressed. We recommend a general application of this strategy that would help understand detailed gene functions in different stages of terminal erythropoiesis.
Immunology, Issue 91, erythropoiesis, cell culture, erythroblast, differentiation, erythropoietin, fetal liver, enucleation
51894
Play Button
Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay
Authors: Miroslav Koulnis, Ramona Pop, Ermelinda Porpiglia, Jeffrey R. Shearstone, Daniel Hidalgo, Merav Socolovsky.
Institutions: University of Massachusetts Medical School.
The study of erythropoiesis aims to understand how red cells are formed from earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in Epo, driving an increase in erythropoietic rate, a process known as the erythropoietic stress response. The resulting increase in the number of circulating red cells improves tissue oxygen delivery. An efficient erythropoietic stress response is therefore critical to the survival and recovery from physiological and pathological conditions such as high altitude, anemia, hemorrhage, chemotherapy or stem cell transplantation. The mouse is a key model for the study of erythropoiesis and its stress response. Mouse definitive (adult-type) erythropoiesis takes place in the fetal liver between embryonic days 12.5 and 15.5, in the neonatal spleen, and in adult spleen and bone marrow. Classical methods of identifying erythroid progenitors in tissue rely on the ability of these cells to give rise to red cell colonies when plated in Epo-containing semi-solid media. Their erythroid precursor progeny are identified based on morphological criteria. Neither of these classical methods allow access to large numbers of differentiation-stage-specific erythroid cells for molecular study. Here we present a flow-cytometric method of identifying and studying differentiation-stage-specific erythroid progenitors and precursors, directly in the context of freshly isolated mouse tissue. The assay relies on the cell-surface markers CD71, Ter119, and on the flow-cytometric 'forward-scatter' parameter, which is a function of cell size. The CD71/Ter119 assay can be used to study erythroid progenitors during their response to erythropoietic stress in vivo, for example, in anemic mice or mice housed in low oxygen conditions. It may also be used to study erythroid progenitors directly in the tissues of genetically modified adult mice or embryos, in order to assess the specific role of the modified molecular pathway in erythropoiesis.
Developmental Biology, Issue 54, erythropoiesis, hematopoietic progenitors, flow-cytometry, erythropoietin, EpoR-/- mouse, erythropoietic stress, fetal erythropoiesis, CD71, Ter119, Fetal liver, erythroid subsets, erythroblast, cell cycle
2809
Play Button
Identification of a Murine Erythroblast Subpopulation Enriched in Enucleating Events by Multi-spectral Imaging Flow Cytometry
Authors: Diamantis G. Konstantinidis, Suvarnamala Pushkaran, Katie Giger, Stefanos Manganaris, Yi Zheng, Theodosia A. Kalfa.
Institutions: University of Cincinnati College of Medicine, IBM.
Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis. We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters “aspect ratio” of a cell in the bright-field channel that aids in the recognition of elongated cells and “delta centroid XY Ter119/Draq5” that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.
Basic Protocol, Issue 88, Erythropoiesis, Erythroblast enucleation, Reticulocyte, Multi-Spectral Imaging Flow Cytometry, FACS, Multiparameter high-speed cell imaging in flow, Aspect ratio, Delta centroid XY
50990
Play Button
Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector
Authors: Andreia Gianotti Sommer, Sarah S. Rozelle, Spencer Sullivan, Jason A. Mills, Seon-Mi Park, Brenden W. Smith, Amulya M. Iyer, Deborah L. French, Darrell N. Kotton, Paul Gadue, George J. Murphy, Gustavo Mostoslavsky.
Institutions: Boston University School of Medicine, Children's Hospital of Philadelphia, Children's Hospital of Philadelphia.
Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)1-4. Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies5. We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors6. These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs7-9. In one study, a Tet inducible version of the STEMCCA vector was employed9, which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described10,11 in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.
Stem Cell Biology, Issue 68, Induced pluripotent stem cells (iPSCs), peripheral blood mononuclear cells (PBMCs), reprogramming, single excisable lentiviral vector, STEMCCA
4327
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
50829
Play Button
Selection of Plasmodium falciparum Parasites for Cytoadhesion to Human Brain Endothelial Cells
Authors: Antoine Claessens, J. Alexandra Rowe.
Institutions: University of Edinburgh.
Most human malaria deaths are caused by blood-stage Plasmodium falciparum parasites. Cerebral malaria, the most life-threatening complication of the disease, is characterised by an accumulation of Plasmodium falciparum infected red blood cells (iRBC) at pigmented trophozoite stage in the microvasculature of the brain2-4. This microvessel obstruction (sequestration) leads to acidosis, hypoxia and harmful inflammatory cytokines (reviewed in 5). Sequestration is also found in most microvascular tissues of the human body2, 3. The mechanism by which iRBC attach to the blood vessel walls is still poorly understood. The immortalized Human Brain microvascular Endothelial Cell line (HBEC-5i) has been used as an in vitro model of the blood-brain barrier6. However, Plasmodium falciparum iRBC attach only poorly to HBEC-5i in vitro, unlike the dense sequestration that occurs in cerebral malaria cases. We therefore developed a panning assay to select (enrich) various P. falciparum strains for adhesion to HBEC-5i in order to obtain populations of high-binding parasites, more representative of what occurs in vivo. A sample of a parasite culture (mixture of iRBC and uninfected RBC) at the pigmented trophozoite stage is washed and incubated on a layer of HBEC-5i grown on a Petri dish. After incubation, the dish is gently washed free from uRBC and unbound iRBC. Fresh uRBC are added to the few iRBC attached to HBEC-5i and incubated overnight. As schizont stage parasites burst, merozoites reinvade RBC and these ring stage parasites are harvested the following day. Parasites are cultured until enough material is obtained (typically 2 to 4 weeks) and a new round of selection can be performed. Depending on the P. falciparum strain, 4 to 7 rounds of selection are needed in order to get a population where most parasites bind to HBEC-5i. The binding phenotype is progressively lost after a few weeks, indicating a switch in variant surface antigen gene expression, thus regular selection on HBEC-5i is required to maintain the phenotype. In summary, we developed a selection assay rendering P. falciparum parasites a more "cerebral malaria adhesive" phenotype. We were able to select 3 out of 4 P. falciparum strains on HBEC-5i. This assay has also successfully been used to select parasites for binding to human dermal and pulmonary endothelial cells. Importantly, this method can be used to select tissue-specific parasite populations in order to identify candidate parasite ligands for binding to brain endothelium. Moreover, this assay can be used to screen for putative anti-sequestration drugs7.
Immunology, Issue 59, Plasmodium falciparum, cerebral malaria, cytoadherence, sequestration, endothelial cell, HBEC-5i
3122
Play Button
Lentiviral-mediated Knockdown During Ex Vivo Erythropoiesis of Human Hematopoietic Stem Cells
Authors: Carmen G. Palii, Roya Pasha, Marjorie Brand.
Institutions: Ottawa Hospital Research Institute, University of Ottawa.
Erythropoiesis is a commonly used model system to study cell differentiation. During erythropoiesis, pluripotent adult human hematopoietic stem cells (HSCs) differentiate into oligopotent progenitors, committed precursors and mature red blood cells 1. This process is regulated for a large part at the level of gene expression, whereby specific transcription factors activate lineage-specific genes while concomitantly repressing genes that are specific to other cell types 2. Studies on transcription factors regulating erythropoiesis are often performed using human and murine cell lines that represent, to some extent, erythroid cells at given stages of differentiation 3-5. However transformed cell lines can only partially mimic erythroid cells and most importantly they do not allow one to comprehensibly study the dynamic changes that occur as cells progress through many stages towards their final erythroid fate. Therefore, a current challenge remains the development of a protocol to obtain relatively homogenous populations of primary HSCs and erythroid cells at various stages of differentiation in quantities that are sufficient to perform genomics and proteomics experiments. Here we describe an ex vivo cell culture protocol to induce erythroid differentiation from human hematopoietic stem/progenitor cells that have been isolated from either cord blood, bone marrow, or adult peripheral blood mobilized with G-CSF (leukapheresis). This culture system, initially developed by the Douay laboratory 6, uses cytokines and co-culture on mesenchymal cells to mimic the bone marrow microenvironment. Using this ex vivo differentiation protocol, we observe a strong amplification of erythroid progenitors, an induction of differentiation exclusively towards the erythroid lineage and a complete maturation to the stage of enucleated red blood cells. Thus, this system provides an opportunity to study the molecular mechanism of transcriptional regulation as hematopoietic stem cells progress along the erythroid lineage. Studying erythropoiesis at the transcriptional level also requires the ability to over-express or knockdown specific factors in primary erythroid cells. For this purpose, we use a lentivirus-mediated gene delivery system that allows for the efficient infection of both dividing and non-dividing cells 7. Here we show that we are able to efficiently knockdown the transcription factor TAL1 in primary human erythroid cells. In addition, GFP expression demonstrates an efficiency of lentiviral infection close to 90%. Thus, our protocol provides a highly useful system for characterization of the regulatory network of transcription factors that control erythropoiesis.
Cellular Biology, Issue 53, Human hematopoietic stem cells, erythropoiesis, red blood cells, lentivirus, knockdown, transcription factor
2813
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
225
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
231
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
233
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.