JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 08-12-2010
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) have pleiotropic vascular protective effects besides cholesterol lowering. Recently, experimental and clinical studies have indicated that senescence of endothelial cells is involved in endothelial dysfunction and atherogenesis. Therefore, the present study was performed to determine whether statins would reduce endothelial senescence and to clarify the molecular mechanisms underlying the antisenescent property of statins.
Authors: Tobias Ruck, Stefan Bittner, Lisa Epping, Alexander M. Herrmann, Sven G. Meuth.
Published: 11-14-2014
ABSTRACT
The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.
24 Related JoVE Articles!
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
50443
Play Button
A Sensitive Method to Quantify Senescent Cancer Cells
Authors: Julie Cahu, Brigitte Sola.
Institutions: Université de Caen Basse-Normandie.
Human cells do not indefinitely proliferate. Upon external and/or intrinsic cues, cells might die or enter a stable cell cycle arrest called senescence. Several cellular mechanisms, such as telomere shortening and abnormal expression of mitogenic oncogenes, have been shown to cause senescence. Senescence is not restricted to normal cells; cancer cells have also been reported to senesce. Chemotherapeutical drugs have been shown to induce senescence in cancer cells. However, it remains controversial whether senescence prevents or promotes tumorigenesis. As it might eventually be patient-specific, a rapid and sensitive method to assess senescence in cancer cell will soon be required. To this end, the standard β-galactosidase assay, the currently used method, presents major drawbacks: it is time consuming and not sensitive. We propose here a flow cytometry-based assay to study senescence on live cells. This assay offers the advantage of being rapid, sensitive, and can be coupled to the immunolabeling of various cellular markers.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Anatomy, Physiology, Genetics, Oncology, Tumor Cells, Cultured, Early Detection of Cancer, senescence, cancer, cells, flow cytometry, C12FDG, cell culture, clinical applications
50494
Play Button
Isolation of Microvascular Endothelial Tubes from Mouse Resistance Arteries
Authors: Matthew J. Socha, Steven S. Segal.
Institutions: University of Missouri, Dalton Cardiovascular Research Center.
The control of blood flow by the resistance vasculature regulates the supply of oxygen and nutrients concomitant with the removal of metabolic by-products, as exemplified by exercising skeletal muscle. Endothelial cells (ECs) line the intima of all resistance vessels and serve a key role in controlling diameter (e.g. endothelium-dependent vasodilation) and, thereby, the magnitude and distribution of tissue blood flow. The regulation of vascular resistance by ECs is effected by intracellular Ca2+ signaling, which leads to production of diffusible autacoids (e.g. nitric oxide and arachidonic acid metabolites)1-3 and hyperpolarization4,5 that elicit smooth muscle cell relaxation. Thus understanding the dynamics of endothelial Ca2+ signaling is a key step towards understanding mechanisms governing blood flow control. Isolating endothelial tubes eliminates confounding variables associated with blood in the vessel lumen and with surrounding smooth muscle cells and perivascular nerves, which otherwise influence EC structure and function. Here we present the isolation of endothelial tubes from the superior epigastric artery (SEA) using a protocol optimized for this vessel. To isolate endothelial tubes from an anesthetized mouse, the SEA is ligated in situ to maintain blood within the vessel lumen (to facilitate visualizing it during dissection), and the entire sheet of abdominal muscle is excised. The SEA is dissected free from surrounding skeletal muscle fibers and connective tissue, blood is flushed from the lumen, and mild enzymatic digestion is performed to enable removal of adventitia, nerves and smooth muscle cells using gentle trituration. These freshly-isolated preparations of intact endothelium retain their native morphology, with individual ECs remaining functionally coupled to one another, able to transfer chemical and electrical signals intercellularly through gap junctions6,7. In addition to providing new insight into calcium signaling and membrane biophysics, these preparations enable molecular studies of gene expression and protein localization within native microvascular endothelium.
Basic Protocol, Issue 81, endothelial tubes, microcirculation, calcium signaling, resistance vasculature, Confocal microscopy
50759
Play Button
Novel Whole-tissue Quantitative Assay of Nitric Oxide Levels in Drosophila Neuroinflammatory Response
Authors: Rami R. Ajjuri, Janis M. O'Donnell.
Institutions: University of Alabama.
Neuroinflammation is a complex innate immune response vital to the healthy function of the central nervous system (CNS). Under normal conditions, an intricate network of inducers, detectors, and activators rapidly responds to neuron damage, infection or other immune infractions. This inflammation of immune cells is intimately associated with the pathology of neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease and ALS. Under compromised disease states, chronic inflammation, intended to minimize neuron damage, may lead to an over-excitation of the immune cells, ultimately resulting in the exacerbation of disease progression. For example, loss of dopaminergic neurons in the midbrain, a hallmark of PD, is accelerated by the excessive activation of the inflammatory response. Though the cause of PD is largely unknown, exposure to environmental toxins has been implicated in the onset of sporadic cases. The herbicide paraquat, for example, has been shown to induce Parkinsonian-like pathology in several animal models, including Drosophila melanogaster. Here, we have used the conserved innate immune response in Drosophila to develop an assay capable of detecting varying levels of nitric oxide, a cell-signaling molecule critical to the activation of the inflammatory response cascade and targeted neuron death. Using paraquat-induced neuronal damage, we assess the impact of these immune insults on neuroinflammatory stimulation through the use of a novel, quantitative assay. Whole brains are fully extracted from flies either exposed to neurotoxins or of genotypes that elevate susceptibility to neurodegeneration then incubated in cell-culture media. Then, using the principles of the Griess reagent reaction, we are able to detect minor changes in the secretion of nitric oxide into cell-culture media, essentially creating a primary live-tissue model in a simple procedure. The utility of this model is amplified by the robust genetic and molecular complexity of Drosophila melanogaster, and this assay can be modified to be applicable to other Drosophila tissues or even other small, whole-organism inflammation models.
Immunology, Issue 82, biology (general), environmental effects (biological, animal and plant), immunology, animal models, Immune System Diseases, Pathological Conditions, Signs and Symptoms, Life Sciences (General), Neuroinflammation, inflammation, nitric oxide, nitric oxide synthase, Drosophila, neurodegeneration, brain, Griess assay, nitrite detection, innate immunity, Parkinson disease, tissue culture
50892
Play Button
Preparation of Hydroxy-PAAm Hydrogels for Decoupling the Effects of Mechanotransduction Cues
Authors: Thomas Grevesse, Marie Versaevel, Sylvain Gabriele.
Institutions: Université de Mons.
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions. Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.
Bioengineering, Issue 90, hydrogels, mechanotransduction, polyacrylamide, microcontact printing, cell shape, stiffness, durotaxis, cell-ligand density
51010
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
51328
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
51478
Play Button
Isolation of Murine Valve Endothelial Cells
Authors: Lindsey J. Miller, Joy Lincoln.
Institutions: The Ohio State University, The Research Institute at Nationwide Children's Hospital, The Ohio State University.
Normal valve structures consist of stratified layers of specialized extracellular matrix (ECM) interspersed with valve interstitial cells (VICs) and surrounded by a monolayer of valve endothelial cells (VECs). VECs play essential roles in establishing the valve structures during embryonic development, and are important for maintaining life-long valve integrity and function. In contrast to a continuous endothelium over the surface of healthy valve leaflets, VEC disruption is commonly observed in malfunctioning valves and is associated with pathological processes that promote valve disease and dysfunction. Despite the clinical relevance, focused studies determining the contribution of VECs to development and disease processes are limited. The isolation of VECs from animal models would allow for cell-specific experimentation. VECs have been isolated from large animal adult models but due to their small population size, fragileness, and lack of specific markers, no reports of VEC isolations in embryos or adult small animal models have been reported. Here we describe a novel method that allows for the direct isolation of VECs from mice at embryonic and adult stages. Utilizing the Tie2-GFP reporter model that labels all endothelial cells with Green Fluorescent Protein (GFP), we have been successful in isolating GFP-positive (and negative) cells from the semilunar and atrioventricular valve regions using fluorescence activated cell sorting (FACS). Isolated GFP-positive VECs are enriched for endothelial markers, including CD31 and von Willebrand Factor (vWF), and retain endothelial cell expression when cultured; while, GFP-negative cells exhibit molecular profiles and cell shapes consistent with VIC phenotypes. The ability to isolate embryonic and adult murine VECs allows for previously unattainable molecular and functional studies to be carried out on a specific valve cell population, which will greatly improve our understanding of valve development and disease mechanisms.
Cellular Biology, Issue 90, Heart valve, Valve Endothelial Cells (VEC), Fluorescence Activated Cell Sorting (FACS), Mouse, Embryo, Adult, GFP.
51860
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
52070
Play Button
5/6th Nephrectomy in Combination with High Salt Diet and Nitric Oxide Synthase Inhibition to Induce Chronic Kidney Disease in the Lewis Rat
Authors: Arianne van Koppen, Marianne C. Verhaar, Lennart G. Bongartz, Jaap A. Joles.
Institutions: University Medical Center Utrecht.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
Medicine, Issue 77, Anatomy, Physiology, Biomedical Engineering, Surgery, Nephrology Kidney Diseases, Glomerular Filtration Rate, Hemodynamics, Surgical Procedures, Operative, Chronic kidney disease, remnant kidney, chronic renal diseases, kidney, Nitric Oxide depletion, NO depletion, high salt diet, proteinuria, uremia, glomerulosclerosis, transgenic rat, animal model
50398
Play Button
In vivo Measurement of the Mouse Pulmonary Endothelial Surface Layer
Authors: Yimu Yang, Gaoqing Yang, Eric P. Schmidt.
Institutions: University of Colorado School of Medicine.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.
Medicine, Issue 72, Cellular Biology, Anatomy, Physiology, Biomedical Engineering, Biophysics, Surgery, Endothelium, Vascular, Inflammation, Pulmonary Circulation, Intravital Microscopy, endothelial surface layer, endothelial, glycocalyx, pulmonary microvasculature, catheter, tracheostomy, venous, catheterization, lung injury, mouse, animal model
50322
Play Button
An in vivo Assay to Test Blood Vessel Permeability
Authors: Maria Radu, Jonathan Chernoff.
Institutions: Fox Chase Cancer Center .
This method is based on the intravenous injection of Evans Blue in mice as the test animal model. Evans blue is a dye that binds albumin. Under physiologic conditions the endothelium is impermeable to albumin, so Evans blue bound albumin remains restricted within blood vessels. In pathologic conditions that promote increased vascular permeability endothelial cells partially lose their close contacts and the endothelium becomes permeable to small proteins such as albumin. This condition allows for extravasation of Evans Blue in tissues. A healthy endothelium prevents extravasation of the dye in the neighboring vascularized tissues. Organs with increased permeability will show significantly increased blue coloration compared to organs with intact endothelium. The level of vascular permeability can be assessed by simple visualization or by quantitative measurement of the dye incorporated per milligram of tissue of control versus experimental animal/tissue. Two powerful aspects of this assay are its simplicity and quantitative characteristics. Evans Blue dye can be extracted from tissues by incubating a specific amount of tissue in formamide. Evans Blue absorbance maximum is at 620 nm and absorbance minimum is at 740 nm. By using a standard curve for Evans Blue, optical density measurements can be converted into milligram dye captured per milligram of tissue. Statistical analysis should be used to assess significant differences in vascular permeability.
Medicine, Issue 73, Immunology, Physiology, Anatomy, Surgery, Hematology, Blood Vessels, Endothelium, Vascular, Vascular Cell Adhesion Molecule-1, permeability, in vivo, Evans Blue, Miles assay, assay, intravenous injection, mouse, animal model
50062
Play Button
A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium
Authors: Douglas Nam, Chih-Wen Ni, Amir Rezvan, Jin Suo, Klaudia Budzyn, Alexander Llanos, David G. Harrison, Don P. Giddens, Hanjoong Jo.
Institutions: Emory University, Georgia Tech and Emory University, Ewha Womans University.
Despite the well-known close association, direct evidence linking disturbed flow to atherogenesis has been lacking. We have recently used a modified version of carotid partial ligation methods [1,2] to show that it acutely induces low and oscillatory flow conditions, two key characteristics of disturbed flow, in the mouse common carotid artery. Using this model, we have provided direct evidence that disturbed flow indeed leads to rapid and robust atherosclerosis development in Apolipoprotein E knockout mouse [3]. We also developed a method of endothelial RNA preparation with high purity from the mouse carotid intima [3]. Using this mouse model and method, we found that partial ligation causes endothelial dysfunction in a week, followed by robust and rapid atheroma formation in two weeks in a hyperlipidemic mouse model along with features of complex lesion formation such as intraplaque neovascularization by four weeks. This rapid in vivo model and the endothelial RNA preparation method could be used to determine molecular mechanisms underlying flow-dependent regulation of vascular biology and diseases. Also, it could be used to test various therapeutic interventions targeting endothelial dysfunction and atherosclerosis in considerably reduced study duration.
JoVE Medicine, Issue 40, atherosclerosis, disturbed flow, shear stress, carotid, partial ligation, endothelial RNA
1861
Play Button
Electrolytic Inferior Vena Cava Model (EIM) of Venous Thrombosis
Authors: Jose A. Diaz, Shirley K. Wrobleski, Angela E. Hawley, Benedict R. Lucchesi, Thomas W. Wakefield, Daniel D. Myers, Jr..
Institutions: University of Michigan , University of Michigan.
Animal models serve a vital role in deep venous thrombosis (DVT) research in order to study thrombus formation, thrombus resolution and to test potential therapeutic compounds (1). New compounds to be utilized in the treatment and prevention of DVT are currently being developed. The delivery of potential therapeutic antagonist compounds to an affected thrombosed vein has been problematic. In the context of therapeutic applications, a model that uses partial stasis and consistently generates thrombi within a major vein has been recently established. The Electrolytic Inferior vena cava Model (EIM) is mouse model of DVT that permits thrombus formation in the presence of continuous blood flow. This model allows therapeutic agents to be in contact with the thrombus in a dynamic fashion, and is more sensitive than other models of DVT (1). In addition, this thrombosis model closely simulates clinical situations of thrombus formation and is ideal to study venous endothelial cell activation, leukocyte migration, venous thrombogenesis, and to test therapeutic applications (1). The EIM model is technically simple, easily reproducible, creates consistent thrombi sizes and allows for a large sample (i.e. thrombus and vein wall) which is required for analytical purposes.
Medicine, Issue 53, Endothelial dysfunction, Thrombosis, Electrolytic injury, Inflammation, Animal model
2737
Play Button
Detection of Nitric Oxide and Superoxide Radical Anion by Electron Paramagnetic Resonance Spectroscopy from Cells using Spin Traps
Authors: Bhavani Gopalakrishnan, Kevin M. Nash, Murugesan Velayutham, Frederick A. Villamena.
Institutions: The Ohio State University, College of Medicine, The Ohio State University.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8. There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9. The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.
Molecular Biology, Issue 66, Cellular Biology, Physics, Biophysics, spin trap, eNOS, ROS, superoxide, NO, EPR
2810
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
3040
Play Button
Imaging Leukocyte Adhesion to the Vascular Endothelium at High Intraluminal Pressure
Authors: Danielle L. Michell, Karen L. Andrews, Kevin J. Woollard, Jaye P.F. Chin-Dusting.
Institutions: Monash University.
Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease2, stroke3 and heart failure4. An initial step in vascular inflammation leading to atherogenesis is the adhesion cascade which involves the rolling, tethering, adherence and subsequent transmigration of leukocytes through the endothelium. Recruitment and accumulation of leukocytes to the endothelium is mediated by an upregulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1) and E-selectin as well as increases in cytokine and chemokine release and an upregulation of reactive oxygen species5. In vitro methods such as static adhesion assays help to determine mechanisms involved in cell-to-cell adhesion as well as the analysis of cell adhesion molecules. Methods employed in previous in vitro studies have demonstrated that acute increases in pressure on the endothelium can lead to monocyte adhesion, an upregulation of adhesion molecules and inflammatory markers6 however, similar to many in vitro assays, these findings have not been performed in real time under physiological flow conditions, nor with whole blood. Therefore, in vivo assays are increasingly utilised in animal models to demonstrate vascular inflammation and plaque development. Intravital microscopy is now widely used to assess leukocyte adhesion, rolling, migration and transmigration7-9. When combining the effects of pressure on leukocyte to endothelial adhesion the in vivo studies are less extensive. One such study examines the real time effects of flow and shear on arterial growth and remodelling but inflammatory markers were only assessed via immunohistochemistry10. Here we present a model for recording leukocyte adhesion in real time in intact pressurised blood vessels using whole blood perfusion. The methodology is a modification of an ex vivo vessel chamber perfusion model9 which enables real-time analysis of leukocyte -endothelial adhesive interactions in intact vessels. Our modification enables the manipulation of the intraluminal pressure up to 200 mmHg allowing for study not only under physiological flow conditions but also pressure conditions. While pressure myography systems have been previously demonstrated to observe vessel wall and lumen diameter11 as well as vessel contraction this is the first time demonstrating leukocyte-endothelial interactions in real time. Here we demonstrate the technique using carotid arteries harvested from rats and cannulated to a custom-made flow chamber coupled to a fluorescent microscope. The vessel chamber is equipped with a large bottom coverglass allowing a large diameter objective lens with short working distance to image the vessel. Furthermore, selected agonist and/or antagonists can be utilized to further investigate the mechanisms controlling cell adhesion. Advantages of this method over intravital microscopy include no involvement of invasive surgery and therefore a higher throughput can be obtained. This method also enables the use of localised inhibitor treatment to the desired vessel whereas intravital only enables systemic inhibitor treatment.
Immunology, Issue 54, Leukocyte adhesion, intraluminal pressure, endothelial dysfunction, inflammation, hypertension
3221
Play Button
Implantation of a Carotid Cuff for Triggering Shear-stress Induced Atherosclerosis in Mice
Authors: Michael T. Kuhlmann, Simon Cuhlmann, Irmgard Hoppe, Rob Krams, Paul C. Evans, Gustav J. Strijkers, Klaas Nicolay, Sven Hermann, Michael Schäfers.
Institutions: Westfälische Wilhelms-University Münster, Imperial College London , Imperial College London , Eindhoven University of Technology.
It is widely accepted that alterations in vascular shear stress trigger the expression of inflammatory genes in endothelial cells and thereby induce atherosclerosis (reviewed in 1 and 2). The role of shear stress has been extensively studied in vitro investigating the influence of flow dynamics on cultured endothelial cells 1,3,4 and in vivo in larger animals and humans 1,5,6,7,8. However, highly reproducible small animal models allowing systematic investigation of the influence of shear stress on plaque development are rare. Recently, Nam et al. 9 introduced a mouse model in which the ligation of branches of the carotid artery creates a region of low and oscillatory flow. Although this model causes endothelial dysfunction and rapid formation of atherosclerotic lesions in hyperlipidemic mice, it cannot be excluded that the observed inflammatory response is, at least in part, a consequence of endothelial and/or vessel damage due to ligation. In order to avoid such limitations, a shear stress modifying cuff has been developed based upon calculated fluid dynamics, whose cone shaped inner lumen was selected to create defined regions of low, high and oscillatory shear stress within the common carotid artery 10. By applying this model in Apolipoprotein E (ApoE) knockout mice fed a high cholesterol western type diet, vascular lesions develop upstream and downstream from the cuff. Their phenotype is correlated with the regional flow dynamics 11 as confirmed by in vivo Magnetic Resonance Imaging (MRI) 12: Low and laminar shear stress upstream of the cuff causes the formation of extensive plaques of a more vulnerable phenotype, whereas oscillatory shear stress downstream of the cuff induces stable atherosclerotic lesions 11. In those regions of high shear stress and high laminar flow within the cuff, typically no atherosclerotic plaques are observed. In conclusion, the shear stress-modifying cuff procedure is a reliable surgical approach to produce phenotypically different atherosclerotic lesions in ApoE-deficient mice.
Medicine, Issue 59, atherosclerosis, mouse, cardiovascular disease, shear stress
3308
Play Button
Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress
Authors: Whitney O. Lane, Alexandra E. Jantzen, Tim A. Carlon, Ryan M. Jamiolkowski, Justin E. Grenet, Melissa M. Ley, Justin M. Haseltine, Lauren J. Galinat, Fu-Hsiung Lin, Jason D. Allen, George A. Truskey, Hardean E. Achneck.
Institutions: Duke University Medical Center, Duke University , University of Pennsylvania , Duke University Medical Center.
The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6.
Bioengineering, Issue 59, Fluid Shear Stress, Shear Stress, Shear Force, Endothelium, Endothelial Progenitor Cells, Flow Chamber, Laminar Flow, Flow Circuit, Continuous Flow, Cell Adhesion
3349
Play Button
On-Chip Endothelial Inflammatory Phenotyping
Authors: J. Sherrod DeVerse, Keith A. Bailey, Greg A. Foster, Vaishali Mittal, Stuart M. Altman, Scott I. Simon, Anthony G. Passerini.
Institutions: University of California, Davis .
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual's level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.
Biomedical Engineering, Issue 65, Bioengineering, Immunology, Molecular Biology, Genetics, endothelial cell, monocyte arrest, microfluidics, shear stress, cytokine, atherosclerosis, inflammation
4169
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
2167
Play Button
Aortic Ring Assay
Authors: Keren Bellacen, Eli C. Lewis.
Institutions: Ben-Gurion University.
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite.
Medicine, Issue 33, aortic rings, angiogenesis, blood vessels, aorta, mouse, vessel outgrowth
1564
Play Button
Christopher Hughes: An in vitro model for the Study of Angiogenesis (Interview)
Authors: Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Christopher C.W. Hughes describes the utility of his culture system for studying angiogenesis in vitro. He explains the importance of fibroblasts that secrete a critical, yet unidentified, soluble factor that allow endothelial cells to form vessels in culture that branch, form proper lumens, and undergo anastamosis.
Cellular Biology, Issue 3, angiogenesis, fibrin, endothelial, HUVEC, umbilical, Translational Research
175
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.