JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling.
J Ginseng Res
PUBLISHED: 05-30-2013
Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis.
Authors: Mohd Shahid, Emmanuel S. Buys.
Published: 06-07-2013
Pressure myograph systems are exquisitely useful in the functional assessment of small arteries, pressurized to a suitable transmural pressure. The near physiological condition achieved in pressure myography permits in-depth characterization of intrinsic responses to pharmacological and physiological stimuli, which can be extrapolated to the in vivo behavior of the vascular bed. Pressure myograph has several advantages over conventional wire myographs. For example, smaller resistance vessels can be studied at tightly controlled and physiologically relevant intraluminal pressures. Here, we study the ability of 3rd order mesenteric arteries (3-4 mm long), preconstricted with phenylephrine, to vaso-relax in response to acetylcholine. Mesenteric arteries are mounted on two cannulas connected to a pressurized and sealed system that is maintained at constant pressure of 60 mmHg. The lumen and outer diameter of the vessel are continuously recorded using a video camera, allowing real time quantification of the vasoconstriction and vasorelaxation in response to phenylephrine and acetylcholine, respectively. To demonstrate the applicability of pressure myography to study the etiology of cardiovascular disease, we assessed endothelium-dependent vascular function in a murine model of systemic hypertension. Mice deficient in the α1 subunit of soluble guanylate cyclase (sGCα1-/-) are hypertensive when on a 129S6 (S6) background (sGCα1-/-S6) but not when on a C57BL/6 (B6) background (sGCα1-/-B6). Using pressure myography, we demonstrate that sGCα1-deficiency results in impaired endothelium-dependent vasorelaxation. The vascular dysfunction is more pronounced in sGCα1-/-S6 than in sGCα1-/-B6 mice, likely contributing to the higher blood pressure in sGCα1-/-S6 than in sGCα1-/-B6 mice. Pressure myography is a relatively simple, but sensitive and mechanistically useful technique that can be used to assess the effect of various stimuli on vascular contraction and relaxation, thereby augmenting our insight into the mechanisms underlying cardiovascular disease.
21 Related JoVE Articles!
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium
Authors: Douglas Nam, Chih-Wen Ni, Amir Rezvan, Jin Suo, Klaudia Budzyn, Alexander Llanos, David G. Harrison, Don P. Giddens, Hanjoong Jo.
Institutions: Emory University, Georgia Tech and Emory University, Ewha Womans University.
Despite the well-known close association, direct evidence linking disturbed flow to atherogenesis has been lacking. We have recently used a modified version of carotid partial ligation methods [1,2] to show that it acutely induces low and oscillatory flow conditions, two key characteristics of disturbed flow, in the mouse common carotid artery. Using this model, we have provided direct evidence that disturbed flow indeed leads to rapid and robust atherosclerosis development in Apolipoprotein E knockout mouse [3]. We also developed a method of endothelial RNA preparation with high purity from the mouse carotid intima [3]. Using this mouse model and method, we found that partial ligation causes endothelial dysfunction in a week, followed by robust and rapid atheroma formation in two weeks in a hyperlipidemic mouse model along with features of complex lesion formation such as intraplaque neovascularization by four weeks. This rapid in vivo model and the endothelial RNA preparation method could be used to determine molecular mechanisms underlying flow-dependent regulation of vascular biology and diseases. Also, it could be used to test various therapeutic interventions targeting endothelial dysfunction and atherosclerosis in considerably reduced study duration.
JoVE Medicine, Issue 40, atherosclerosis, disturbed flow, shear stress, carotid, partial ligation, endothelial RNA
Play Button
Inducing Myointimal Hyperplasia Versus Atherosclerosis in Mice: An Introduction of Two Valid Models
Authors: Mandy Stubbendorff, Xiaoqin Hua, Tobias Deuse, Ziad Ali, Hermann Reichenspurner, Lars Maegdefessel, Robert C. Robbins, Sonja Schrepfer.
Institutions: University Hospital Hamburg, Cardiovascular Research Center (CVRC) and DZHK University Hamburg, University Heart Center Hamburg, Columbia University, Cardiovascular Research Foundation, New York, Karolinska Institute, Stockholm, Stanford University School of Medicine, Falk Cardiovascular Research Center.
Various in vivo laboratory rodent models for the induction of artery stenosis have been established to mimic diseases that include arterial plaque formation and stenosis, as observed for example in ischemic heart disease. Two highly reproducible mouse models – both resulting in artery stenosis but each underlying a different pathway of development – are introduced here. The models represent the two most common causes of artery stenosis; namely one mouse model for each myointimal hyperplasia, and atherosclerosis are shown. To induce myointimal hyperplasia, a balloon catheter injury of the abdominal aorta is performed. For the development of atherosclerotic plaque, the ApoE -/- mouse model in combination with western fatty diet is used. Different model-adapted options for the measurement and evaluation of the results are named and described in this manuscript. The introduction and comparison of these two models provides information for scientists to choose the appropriate artery stenosis model in accordance to the scientific question asked.
Medicine, Issue 87, vascular diseases, atherosclerosis, coronary stenosis, neointima, myointimal hyperplasia, mice, denudation model, ApoE -/-, balloon injury, western diet, analysis
Play Button
A Murine Model of Stent Implantation in the Carotid Artery for the Study of Restenosis
Authors: Sakine Simsekyilmaz, Fabian Schreiber, Stefan Weinandy, Felix Gremse, Tolga Taha Sönmez, Elisa A. Liehn.
Institutions: RWTH Aachen University, RWTH Aachen University, Helmholtz-Institute of RWTH Aachen University, RWTH Aachen University, RWTH Aachen University.
Despite the considerable progress made in the stent development in the last decades, cardiovascular diseases remain the main cause of death in western countries. Beside the benefits offered by the development of different drug-eluting stents, the coronary revascularization bears also the life-threatening risks of in-stent thrombosis and restenosis. Research on new therapeutic strategies is impaired by the lack of appropriate methods to study stent implantation and restenosis processes. Here, we describe a rapid and accessible procedure of stent implantation in mouse carotid artery, which offers the possibility to study in a convenient way the molecular mechanisms of vessel remodeling and the effects of different drug coatings.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Mechanical Engineering, Cardiology, Surgery, Microsurgery, Animal Experimentation, Models, Animal, Cardiovascular Diseases, Stent implantation, atherosclerosis, restenosis, in-stent thrombosis, stent, mouse carotid artery, arteries, blood vessels, mouse, animal model, surgical techniques
Play Button
Novel Whole-tissue Quantitative Assay of Nitric Oxide Levels in Drosophila Neuroinflammatory Response
Authors: Rami R. Ajjuri, Janis M. O'Donnell.
Institutions: University of Alabama.
Neuroinflammation is a complex innate immune response vital to the healthy function of the central nervous system (CNS). Under normal conditions, an intricate network of inducers, detectors, and activators rapidly responds to neuron damage, infection or other immune infractions. This inflammation of immune cells is intimately associated with the pathology of neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease and ALS. Under compromised disease states, chronic inflammation, intended to minimize neuron damage, may lead to an over-excitation of the immune cells, ultimately resulting in the exacerbation of disease progression. For example, loss of dopaminergic neurons in the midbrain, a hallmark of PD, is accelerated by the excessive activation of the inflammatory response. Though the cause of PD is largely unknown, exposure to environmental toxins has been implicated in the onset of sporadic cases. The herbicide paraquat, for example, has been shown to induce Parkinsonian-like pathology in several animal models, including Drosophila melanogaster. Here, we have used the conserved innate immune response in Drosophila to develop an assay capable of detecting varying levels of nitric oxide, a cell-signaling molecule critical to the activation of the inflammatory response cascade and targeted neuron death. Using paraquat-induced neuronal damage, we assess the impact of these immune insults on neuroinflammatory stimulation through the use of a novel, quantitative assay. Whole brains are fully extracted from flies either exposed to neurotoxins or of genotypes that elevate susceptibility to neurodegeneration then incubated in cell-culture media. Then, using the principles of the Griess reagent reaction, we are able to detect minor changes in the secretion of nitric oxide into cell-culture media, essentially creating a primary live-tissue model in a simple procedure. The utility of this model is amplified by the robust genetic and molecular complexity of Drosophila melanogaster, and this assay can be modified to be applicable to other Drosophila tissues or even other small, whole-organism inflammation models.
Immunology, Issue 82, biology (general), environmental effects (biological, animal and plant), immunology, animal models, Immune System Diseases, Pathological Conditions, Signs and Symptoms, Life Sciences (General), Neuroinflammation, inflammation, nitric oxide, nitric oxide synthase, Drosophila, neurodegeneration, brain, Griess assay, nitrite detection, innate immunity, Parkinson disease, tissue culture
Play Button
5/6th Nephrectomy in Combination with High Salt Diet and Nitric Oxide Synthase Inhibition to Induce Chronic Kidney Disease in the Lewis Rat
Authors: Arianne van Koppen, Marianne C. Verhaar, Lennart G. Bongartz, Jaap A. Joles.
Institutions: University Medical Center Utrecht.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
Medicine, Issue 77, Anatomy, Physiology, Biomedical Engineering, Surgery, Nephrology Kidney Diseases, Glomerular Filtration Rate, Hemodynamics, Surgical Procedures, Operative, Chronic kidney disease, remnant kidney, chronic renal diseases, kidney, Nitric Oxide depletion, NO depletion, high salt diet, proteinuria, uremia, glomerulosclerosis, transgenic rat, animal model
Play Button
Detection of Nitric Oxide and Superoxide Radical Anion by Electron Paramagnetic Resonance Spectroscopy from Cells using Spin Traps
Authors: Bhavani Gopalakrishnan, Kevin M. Nash, Murugesan Velayutham, Frederick A. Villamena.
Institutions: The Ohio State University, College of Medicine, The Ohio State University.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8. There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9. The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.
Molecular Biology, Issue 66, Cellular Biology, Physics, Biophysics, spin trap, eNOS, ROS, superoxide, NO, EPR
Play Button
Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress
Authors: Whitney O. Lane, Alexandra E. Jantzen, Tim A. Carlon, Ryan M. Jamiolkowski, Justin E. Grenet, Melissa M. Ley, Justin M. Haseltine, Lauren J. Galinat, Fu-Hsiung Lin, Jason D. Allen, George A. Truskey, Hardean E. Achneck.
Institutions: Duke University Medical Center, Duke University , University of Pennsylvania , Duke University Medical Center.
The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6.
Bioengineering, Issue 59, Fluid Shear Stress, Shear Stress, Shear Force, Endothelium, Endothelial Progenitor Cells, Flow Chamber, Laminar Flow, Flow Circuit, Continuous Flow, Cell Adhesion
Play Button
Implantation of a Carotid Cuff for Triggering Shear-stress Induced Atherosclerosis in Mice
Authors: Michael T. Kuhlmann, Simon Cuhlmann, Irmgard Hoppe, Rob Krams, Paul C. Evans, Gustav J. Strijkers, Klaas Nicolay, Sven Hermann, Michael Schäfers.
Institutions: Westfälische Wilhelms-University Münster, Imperial College London , Imperial College London , Eindhoven University of Technology.
It is widely accepted that alterations in vascular shear stress trigger the expression of inflammatory genes in endothelial cells and thereby induce atherosclerosis (reviewed in 1 and 2). The role of shear stress has been extensively studied in vitro investigating the influence of flow dynamics on cultured endothelial cells 1,3,4 and in vivo in larger animals and humans 1,5,6,7,8. However, highly reproducible small animal models allowing systematic investigation of the influence of shear stress on plaque development are rare. Recently, Nam et al. 9 introduced a mouse model in which the ligation of branches of the carotid artery creates a region of low and oscillatory flow. Although this model causes endothelial dysfunction and rapid formation of atherosclerotic lesions in hyperlipidemic mice, it cannot be excluded that the observed inflammatory response is, at least in part, a consequence of endothelial and/or vessel damage due to ligation. In order to avoid such limitations, a shear stress modifying cuff has been developed based upon calculated fluid dynamics, whose cone shaped inner lumen was selected to create defined regions of low, high and oscillatory shear stress within the common carotid artery 10. By applying this model in Apolipoprotein E (ApoE) knockout mice fed a high cholesterol western type diet, vascular lesions develop upstream and downstream from the cuff. Their phenotype is correlated with the regional flow dynamics 11 as confirmed by in vivo Magnetic Resonance Imaging (MRI) 12: Low and laminar shear stress upstream of the cuff causes the formation of extensive plaques of a more vulnerable phenotype, whereas oscillatory shear stress downstream of the cuff induces stable atherosclerotic lesions 11. In those regions of high shear stress and high laminar flow within the cuff, typically no atherosclerotic plaques are observed. In conclusion, the shear stress-modifying cuff procedure is a reliable surgical approach to produce phenotypically different atherosclerotic lesions in ApoE-deficient mice.
Medicine, Issue 59, atherosclerosis, mouse, cardiovascular disease, shear stress
Play Button
An in vivo Assay to Test Blood Vessel Permeability
Authors: Maria Radu, Jonathan Chernoff.
Institutions: Fox Chase Cancer Center .
This method is based on the intravenous injection of Evans Blue in mice as the test animal model. Evans blue is a dye that binds albumin. Under physiologic conditions the endothelium is impermeable to albumin, so Evans blue bound albumin remains restricted within blood vessels. In pathologic conditions that promote increased vascular permeability endothelial cells partially lose their close contacts and the endothelium becomes permeable to small proteins such as albumin. This condition allows for extravasation of Evans Blue in tissues. A healthy endothelium prevents extravasation of the dye in the neighboring vascularized tissues. Organs with increased permeability will show significantly increased blue coloration compared to organs with intact endothelium. The level of vascular permeability can be assessed by simple visualization or by quantitative measurement of the dye incorporated per milligram of tissue of control versus experimental animal/tissue. Two powerful aspects of this assay are its simplicity and quantitative characteristics. Evans Blue dye can be extracted from tissues by incubating a specific amount of tissue in formamide. Evans Blue absorbance maximum is at 620 nm and absorbance minimum is at 740 nm. By using a standard curve for Evans Blue, optical density measurements can be converted into milligram dye captured per milligram of tissue. Statistical analysis should be used to assess significant differences in vascular permeability.
Medicine, Issue 73, Immunology, Physiology, Anatomy, Surgery, Hematology, Blood Vessels, Endothelium, Vascular, Vascular Cell Adhesion Molecule-1, permeability, in vivo, Evans Blue, Miles assay, assay, intravenous injection, mouse, animal model
Play Button
In vivo Measurement of the Mouse Pulmonary Endothelial Surface Layer
Authors: Yimu Yang, Gaoqing Yang, Eric P. Schmidt.
Institutions: University of Colorado School of Medicine.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.
Medicine, Issue 72, Cellular Biology, Anatomy, Physiology, Biomedical Engineering, Biophysics, Surgery, Endothelium, Vascular, Inflammation, Pulmonary Circulation, Intravital Microscopy, endothelial surface layer, endothelial, glycocalyx, pulmonary microvasculature, catheter, tracheostomy, venous, catheterization, lung injury, mouse, animal model
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
Play Button
Analytical Techniques for Assaying Nitric Oxide Bioactivity
Authors: Hong Jiang, Deepa Parthasarathy, Ashley C. Torregrossa, Asad Mian, Nathan S. Bryan.
Institutions: University of Texas Health Science Center at Houston , Baylor College of Medicine .
Nitric oxide (NO) is a diatomic free radical that is extremely short lived in biological systems (less than 1 second in circulating blood)1. NO may be considered one of the most important signaling molecules produced in our body, regulating essential functions including but not limited to regulation of blood pressure, immune response and neural communication. Therefore its accurate detection and quantification in biological matrices is critical to understanding the role of NO in health and disease. With such a short physiological half life of NO, alternative strategies for the detection of reaction products of NO biochemistry have been developed. The quantification of relevant NO metabolites in multiple biological compartments provides valuable information with regards to in vivo NO production, bioavailability and metabolism. Simply sampling a single compartment such as blood or plasma may not always provide an accurate assessment of whole body NO status, particularly in tissues. The ability to compare blood with select tissues in experimental animals will help bridge the gap between basic science and clinical medicine as far as diagnostic and prognostic utility of NO biomarkers in health and disease. Therefore, extrapolation of plasma or blood NO status to specific tissues of interest is no longer a valid approach. As a result, methods continue to be developed and validated which allow the detection and quantification of NO and NO-related products/metabolites in multiple compartments of experimental animals in vivo. The established paradigm of NO biochemistry from production by NO synthases to activation of soluble guanylyl cyclase (sGC) to eventual oxidation to nitrite (NO2-) and nitrate (NO3-) may only represent part of NO's effects in vivo. The interaction of NO and NO-derived metabolites with protein thiols, secondary amines, and metals to form S-nitrosothiols (RSNOs), N-nitrosamines (RNNOs), and nitrosyl-heme respectively represent cGMP-independent effects of NO and are likely just as important physiologically as activation of sGC by NO. A true understanding of NO in physiology is derived from in vivo experiments sampling multiple compartments simultaneously. Nitric oxide (NO) methodology is a complex and often confusing science and the focus of many debates and discussion concerning NO biochemistry. The elucidation of new mechanisms and signaling pathways involving NO hinges on our ability to specifically, selectively and sensitively detect and quantify NO and all relevant NO products and metabolites in complex biological matrices. Here, we present a method for the rapid and sensitive analysis of nitrite and nitrate by HPLC as well as detection of free NO in biological samples using in vitro ozone based chemiluminescence with chemical derivitazation to determine molecular source of NO as well as ex vivo with organ bath myography.
Medicine, Issue 64, Molecular Biology, Nitric oxide, nitrite, nitrate, endothelium derived relaxing factor, HPLC, chemiluminscence
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound
Authors: Maggie M. Kuo, Viachaslau Barodka, Theodore P. Abraham, Jochen Steppan, Artin A. Shoukas, Mark Butlin, Alberto Avolio, Dan E. Berkowitz, Lakshmi Santhanam.
Institutions: Johns Hopkins University, Johns Hopkins University, Johns Hopkins University, Macquarie University.
We present a protocol for measuring in vivo aortic stiffness in mice using high-resolution ultrasound imaging. Aortic diameter is measured by ultrasound and aortic blood pressure is measured invasively with a solid-state pressure catheter. Blood pressure is raised then lowered incrementally by intravenous infusion of vasoactive drugs phenylephrine and sodium nitroprusside. Aortic diameter is measured for each pressure step to characterize the pressure-diameter relationship of the ascending aorta. Stiffness indices derived from the pressure-diameter relationship can be calculated from the data collected. Calculation of arterial compliance is described in this protocol. This technique can be used to investigate mechanisms underlying increased aortic stiffness associated with cardiovascular disease and aging. The technique produces a physiologically relevant measure of stiffness compared to ex vivo approaches because physiological influences on aortic stiffness are incorporated in the measurement. The primary limitation of this technique is the measurement error introduced from the movement of the aorta during the cardiac cycle. This motion can be compensated by adjusting the location of the probe with the aortic movement as well as making multiple measurements of the aortic pressure-diameter relationship and expanding the experimental group size.
Medicine, Issue 94, Aortic stiffness, ultrasound, in vivo, aortic compliance, elastic modulus, mouse model, cardiovascular disease
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.