JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst.
Bioresour. Technol.
PUBLISHED: 03-31-2014
Fast microwave-assisted pyrolysis (fMAP) in the presence of a microwave absorbent (SiC) and catalyst (HZSM-5) was tested on a Chlorella sp. strain and on a Nannochloropsis strain. The liquid products were characterized, and the effects of temperature and catalyst:biomass ratio were analyzed. For Chlorella sp., a temperature of 550 °C, with no catalyst were the optimal conditions, resulting in a maximum bio-oil yield of 57 wt.%. For Nannochloropsis, a temperature of 500 °C, with 0.5 of catalyst ratio were shown to be the optimal condition, resulting in a maximum bio-oil yield of 59 wt.%. These results show that the use of microwave absorbents in fMAP increased bio-oil yields and quality, and it is a promising technology to improve the commercial application and economic outlook of microwave pyrolysis technology. Additionally, the use of a different catalyst needs to be considered to improve the bio-oil characteristics.
Authors: Derek D. Lovingood, Jeffrey R. Owens, Michael Seeber, Konstantin G. Kornev, Igor Luzinov.
Published: 12-16-2013
ABSTRACT
Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces.
20 Related JoVE Articles!
Play Button
Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes
Authors: Laura S. Kocsis, Erica Benedetti, Kay M. Brummond.
Institutions: University of Pittsburgh.
Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.
Chemistry, Issue 74, Chemical Engineering, Physical Chemistry, Microwave-assisted synthesis, dehydrogenative Diels-Alder reactions, naphthalenes, fluorescent dyes, solvatochromism, catalyst
50511
Play Button
Dry Oxidation and Vacuum Annealing Treatments for Tuning the Wetting Properties of Carbon Nanotube Arrays
Authors: Adrianus Indrat Aria, Morteza Gharib.
Institutions: California Institute of Technology.
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.1,2 These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.2 Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.3-5 The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.
Chemistry, Issue 74, Chemical Engineering, Materials Science, Nanotechnology, Engineering, Nanotubes, Carbon, Oxidation-Reduction, Surface Properties, carbon nanotubes (synthesis and properties), Carbon nanotube, Wettability, Hydrophobic, Hydrophilic, UV/ozone, Oxygen Plasma, Vacuum Annealing
50378
Play Button
Simultaneous Synthesis of Single-walled Carbon Nanotubes and Graphene in a Magnetically-enhanced Arc Plasma
Authors: Jian Li, Alexey Shashurin, Madhusudhan Kundrapu, Michael Keidar.
Institutions: The George Washington University.
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.
Bioengineering, Issue 60, Arc discharge, magnetic control, single-walled carbon nanotubes, graphene
3455
Play Button
Synthesis and Functionalization of Nitrogen-doped Carbon Nanotube Cups with Gold Nanoparticles as Cork Stoppers
Authors: Yong Zhao, Yifan Tang, Alexander Star.
Institutions: University of Pittsburgh.
Nitrogen-doped carbon nanotubes consist of many cup-shaped graphitic compartments termed as nitrogen-doped carbon nanotube cups (NCNCs). These as-synthesized graphitic nanocups from chemical vapor deposition (CVD) method were stacked in a head-to-tail fashion held only through noncovalent interactions. Individual NCNCs can be isolated out of their stacking structure through a series of chemical and physical separation processes. First, as-synthesized NCNCs were oxidized in a mixture of strong acids to introduce oxygen-containing defects on the graphitic walls. The oxidized NCNCs were then processed using high-intensity probe-tip sonication which effectively separated the stacked NCNCs into individual graphitic nanocups. Owing to their abundant oxygen and nitrogen surface functionalities, the resulted individual NCNCs are highly hydrophilic and can be effectively functionalized with gold nanoparticles (GNPs), which preferentially fit in the opening of the cups as cork stoppers. These graphitic nanocups corked with GNPs may find promising applications as nanoscale containers and drug carriers.
Physics, Issue 75, Chemistry, Chemical Engineering, Materials Science, Physical Chemistry, Nanotechnology, Metal Nanoparticles, carbon nanotubes (synthesis and properties), carbon nanotubes, chemical vapor deposition, CVD, gold nanoparticles, probe-tip sonication, nitrogen-doped carbon nanotube cups, nanotubes, nanoparticles, nanomaterial, synthesis
50383
Play Button
A Simple and Rapid Protocol for Measuring Neutral Lipids in Algal Cells Using Fluorescence
Authors: Zachary J. Storms, Elliot Cameron, Hector de la Hoz Siegler, William C. McCaffrey.
Institutions: University of Alberta, University of Calgary.
Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay.
Chemistry, Issue 87, engineering (general), microbiology, bioengineering (general), Eukaryota Algae, Nile Red, Fluorescence, Oil Content, Oil Extraction, Oil Quantification, Neutral Lipids, Optical Microscope, biomass
51441
Play Button
Analysis of Fatty Acid Content and Composition in Microalgae
Authors: Guido Breuer, Wendy A. C. Evers, Jeroen H. de Vree, Dorinde M. M. Kleinegris, Dirk E. Martens, René H. Wijffels, Packo P. Lamers.
Institutions: Wageningen University and Research Center, Wageningen University and Research Center, Wageningen University and Research Center.
A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.
Environmental Sciences, Issue 80, chemical analysis techniques, Microalgae, fatty acid, triacylglycerol, lipid, gas chromatography, cell disruption
50628
Play Button
Microwave-assisted One-pot Synthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB)
Authors: Shuang Hou, Duy Linh Phung, Wei-Yu Lin, Ming-wei Wang, Kan Liu, Clifton Kwang-Fu Shen.
Institutions: University of California at Los Angeles, University of California at Los Angeles, University of California at Los Angeles, Fudan University, Wuhan Textile University.
Biomolecules, including peptides,1-9 proteins,10,11 and antibodies and their engineered fragments,12-14 are gaining importance as both potential therapeutics and molecular imaging agents. Notably, when labeled with positron-emitting radioisotopes (e.g., Cu-64, Ga-68, or F-18), they can be used as probes for targeted imaging of many physiological and pathological processes.15-18 Therefore, significant effort has devoted to the synthesis and exploration of 18F-labeled biomolecules. Although there are elegant examples of the direct 18F-labeling of peptides,19-22 the harsh reaction conditions (i.e., organic solvent, extreme pH, high temperature) associated with direct radiofluorination are usually incompatible with fragile protein samples. To date, therefore, the incorporation of radiolabeled prosthetic groups into biomolecules remains the method of choice.23,24 N-Succinimidyl-4-[18F]fluorobenzoate ([18F]SFB),25-37 a Bolton-Hunter type reagent that reacts with the primary amino groups of biomolecules, is a very versatile prosthetic group for the 18F-labeling of a wide spectrum of biological entities, in terms of its evident in vivo stability and high radiolabeling yield. After labeling with [18F]SFB, the resulting [18F]fluorobenzoylated biomolecules could be explored as potential PET tracers for in vivo imaging studies.1 Most [18F]SFB radiosyntheses described in the current literatures require two or even three reactors and multiple purifications by using either solid phase extraction (SPE) or high-performance liquid chromatography (HPLC). Such lengthy processes hamper its routine production and widespread applications in the radiolabeling of biomolecules. Although several module-assisted [18F]SFB syntheses have been reported,29-32, 41-42 they are mainly based on complicated and lengthy procedures using costly commercially-available radiochemistry boxes (Table 1). Therefore, further simplification of the radiosynthesis of [18F]SFB using a low-cost setup would be very beneficial for its adaption to an automated process. Herein, we report a concise preparation of [18F]SFB, based on a simplified one-pot microwave-assisted synthesis (Figure 1). Our approach does not require purification between steps or any aqueous reagents. In addition, microwave irradiation, which has been used in the syntheses of several PET tracers,38-41 can gives higher RCYs and better selectivity than the corresponding thermal reactions or they provide similar yields in shorter reaction times.38 Most importantly, when labeling biomolecules, the time saved could be diverted to subsequent bioconjugation or PET imaging step.28,43 The novelty of our improved [18F]SFB synthesis is two-fold: (1) the anhydrous deprotection strategy requires no purification of intermediate(s) between each step and (2) the microwave-assisted radiochemical transformations enable the rapid, reliable production of [18F]SFB.
Molecular Biology, Issue 52, Radiolabeling, microwave, radiochemistry, fluorine-18, one-pot synthesis, [18F]SFB
2755
Play Button
Microwave Photonics Systems Based on Whispering-gallery-mode Resonators
Authors: Aurélien Coillet, Rémi Henriet, Kien Phan Huy, Maxime Jacquot, Luca Furfaro, Irina Balakireva, Laurent Larger, Yanne K. Chembo.
Institutions: FEMTO-ST Institute.
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.
Physics, Issue 78, Optics, Engineering, Electrical Engineering, Mechanical Engineering, Microwaves, nonlinear optics, optical fibers, microwave photonics, whispering-gallery-mode resonator, resonator
50423
Play Button
Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations
Authors: Lian He, Amelia B Chen, Yi Yu, Leah Kucera, Yinjie Tang.
Institutions: Washington University in St. Louis, St. Louis, Wuhan University of China, Washington University in St. Louis.
Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation.
Environmental Sciences, Issue 80, Microbiology, Cellular Biology, Marine Biology, Primary Cell Culture, Chlorella, CO2, mass transfer, Monod model, On-off pulse, Simulink
50718
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
51464
Play Button
Mizoroki-Heck Cross-coupling Reactions Catalyzed by Dichloro{bis[1,1',1''-(phosphinetriyl)tripiperidine]}palladium Under Mild Reaction Conditions
Authors: Miriam Oberholzer, Christian M. Frech.
Institutions: University of Zürich, Zürich University of Applied Sciences.
Dichloro-bis(aminophosphine) complexes of palladium with the general formula of [(P{(NC5H10)3-n(C6H11)n})2Pd(Cl)2] (where n = 0-2), belong to a new family of easy accessible, very cheap, and air stable, but highly active and universally applicable C-C cross-coupling catalysts with an excellent functional group tolerance. Dichloro{bis[1,1',1''-(phosphinetriyl)tripiperidine]}palladium [(P(NC5H10)3)2Pd(Cl)2] (1), the least stable complex within this series towards protons; e.g. in the form of water, allows an eased nanoparticle formation and hence, proved to be the most active Heck catalyst within this series at 100 °C and is a very rare example of an effective and versatile catalyst system that efficiently operates under mild reaction conditions. Rapid and complete catalyst degradation under work-up conditions into phosphonates, piperidinium salts and other, palladium-containing decomposition products assure an easy separation of the coupling products from catalyst and ligands. The facile, cheap, and rapid synthesis of 1,1',1"-(phosphinetriyl)tripiperidine and 1 respectively, the simple and convenient use as well as its excellent catalytic performance in the Heck reaction at 100 °C make 1 to one of the most attractive and greenest Heck catalysts available. We provide here the visualized protocols for the ligand and catalyst syntheses as well as the reaction protocol for Heck reactions performed at 10 mmol scale at 100 °C and show that this catalyst is suitable for its use in organic syntheses.
Chemistry, Issue 85, Heck reaction, C-C cross-coupling, Catalysis, Catalysts, green chemistry, Palladium, Aminophosphines, Palladium nanoparticles, Reaction mechanism, water-induced ligand degradation
51444
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
52183
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials
Authors: Seyed Reza Hashemizad, Sam Tsitrin, Polin Yadak, Yingquan He, Daniel Cuneo, Eric Paul Williamson, Devin Liner, Weining Man.
Institutions: San Francisco State University.
Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.
Physics, Issue 91, optics and photonics, photonic crystals, photonic bandgap, hyperuniform, disordered media, waveguides
51614
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
2910
Play Button
Microwave Assisted Rapid Diagnosis of Plant Virus Diseases by Transmission Electron Microscopy
Authors: Bernd Zechmann, Gerhard Graggaber, Günther Zellnig.
Institutions: University of Graz, Graz University of Technology.
Investigations of ultrastructural changes induced by viruses are often necessary to clearly identify viral diseases in plants. With conventional sample preparation for transmission electron microscopy (TEM) such investigations can take several days1,2 and are therefore not suited for a rapid diagnosis of plant virus diseases. Microwave fixation can be used to drastically reduce sample preparation time for TEM investigations with similar ultrastructural results as observed after conventionally sample preparation3-5. Many different custom made microwave devices are currently available which can be used for the successful fixation and embedding of biological samples for TEM investigations5-8. In this study we demonstrate on Tobacco Mosaic Virus (TMV) infected Nicotiana tabacum plants that it is possible to diagnose ultrastructural alterations in leaves in about half a day by using microwave assisted sample preparation for TEM. We have chosen to perform this study with a commercially available microwave device as it performs sample preparation almost fully automatically5 in contrast to the other available devices where many steps still have to be performed manually6-8 and are therefore more time and labor consuming. As sample preparation is performed fully automatically negative staining of viral particles in the sap of the remaining TMV-infected leaves and the following examination of ultrastructure and size can be performed during fixation and embedding.
Immunology, Issue 56, diagnostics, electron microscopy, microwave, Nicotiana, negative staining, phytopathology, TMV, ultrastructure
2950
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
4182
Play Button
Particles without a Box: Brush-first Synthesis of Photodegradable PEG Star Polymers under Ambient Conditions
Authors: Jenny Liu, Angela Xiaodi Gao, Jeremiah A. Johnson.
Institutions: Massachusetts Institute of Technology.
Convenient methods for the rapid, parallel synthesis of diversely functionalized nanoparticles will enable discovery of novel formulations for drug delivery, biological imaging, and supported catalysis. In this report, we demonstrate parallel synthesis of brush-arm star polymer (BASP) nanoparticles by the "brush-first" method. In this method, a norbornene-terminated poly(ethylene glycol) (PEG) macromonomer (PEG-MM) is first polymerized via ring-opening metathesis polymerization (ROMP) to generate a living brush macroinitiator. Aliquots of this initiator stock solution are added to vials that contain varied amounts of a photodegradable bis-norbornene crosslinker. Exposure to crosslinker initiates a series of kinetically-controlled brush+brush and star+star coupling reactions that ultimately yields BASPs with cores comprised of the crosslinker and coronas comprised of PEG. The final BASP size depends on the amount of crosslinker added. We carry out the synthesis of three BASPs on the benchtop with no special precautions to remove air and moisture. The samples are characterized by gel permeation chromatography (GPC); results agreed closely with our previous report that utilized inert (glovebox) conditions. Key practical features, advantages, and potential disadvantages of the brush-first method are discussed.
Chemistry, Issue 80, Chemical Engineering, Nanoparticles, Polymers, Drug Delivery Systems, Polymerization, polymers, Biomedical and Dental Materials, brush first, polyethylene glycol, photodegradable, ring opening metathesis polymerization, brush polymer, star polymer, drug delivery, gel permeation chromatography, arm first, core functional, photocleavable
50874
Play Button
Proper Care and Cleaning of the Microscope
Authors: Victoria Centonze Frohlich.
Institutions: University of Texas Health Science Center at San Antonio (UTHSCSA).
Keeping the microscope optics clean is important for high-quality imaging. Dust, fingerprints, excess immersion oil, or mounting medium on or in a microscope causes reduction in contrast and resolution. DIC is especially sensitive to contamination and scratches on the lens surfaces. This protocol details the procedure for keeping the microscope clean.
Basic Protocols, Issue 18, Current Protocols Wiley, Microscopy, Cleaning the Microscope
842
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.