JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 05-23-2014
MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper-free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self-assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4-targeted peptide ligands were synthesized and characterized. The IONPs were tested in?vitro and T2 signal enhancements of around 160?% were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor-bearing mice demonstrated the signal-enhancing ability of these 'smart' self-assembling nanomaterials.
Authors: Chun-Hsien Wu, Konstantin Sokolov.
Published: 08-22-2014
ABSTRACT
Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.
22 Related JoVE Articles!
Play Button
Imaging Glycans in Zebrafish Embryos by Metabolic Labeling and Bioorthogonal Click Chemistry
Authors: Hao Jiang, Lei Feng, David Soriano del Amo, Ronald D. Seidel III, Florence Marlow, Peng Wu.
Institutions: Albert Einstein College of Medicine, Yeshiva University, Albert Einstein College of Medicine, Yeshiva University, Albert Einstein College of Medicine, Yeshiva University.
Imaging glycans in vivo has recently been enabled using a bioorthogonal chemical reporter strategy by treating cells or organisms with azide- or alkyne-tagged monosaccharides1, 2. The modified monosaccharides, processed by the glycan biosynthetic machinery, are incorporated into cell surface glycoconjugates. The bioorthogonal azide or alkyne tags then allow covalent conjugation with fluorescent probes for visualization, or with affinity probes for enrichment and glycoproteomic analysis. This protocol describes the procedures typically used for noninvasive imaging of fucosylated glycans in zebrafish embryos, including: 1) microinjection of one-cell stage embryos with GDP-5-alkynylfucose (GDP-FucAl), 2) labeling fucosylated glycans in the enveloping layer of zebrafish embryos with azide-conjugated fluorophores via biocompatible Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), and 3) imaging by confocal microscopy3. The method described here can be readily extended to visualize other classes of glycans, e.g. glycans containing sialic acid4 and N-acetylgalactosamine5, 6, in developing zebrafish and in other living organisms.
Developmental Biology, Issue 52, click chemistry, chemical glycobiology, fucosylated glycans, embryogenesis, microinjection
2686
Play Button
In vitro Labeling of Human Embryonic Stem Cells for Magnetic Resonance Imaging
Authors: Mayumi Yamada, Phillip Yang.
Institutions: Stanford University .
Human embryonic stem cells (hESC) have demonstrated the ability to restore the injured myocardium. Magnetic resonance imaging (MRI) has emerged as one of the predominant imaging modalities to assess the restoration of the injured myocardium. Furthermore, ex-vivo labeling agents, such as iron-oxide nanoparticles, have been employed to track and localize the transplanted stem cells. However, this method does not monitor a fundamental cellular biology property regarding the viability of transplanted cells. It has been known that manganese chloride (MnCl2) enters the cells via voltage-gated calcium (Ca2+) channels when the cells are biologically active, and accumulates intracellularly to generate T1 shortening effect. Therefore, we suggest that manganese-guided MRI can be useful to monitor cell viability after the transplantation of hESC into the myocardium. In this video, we will show how to label hESC with MnCl2 and how those cells can be clearly seen by using MRI in vitro. At the same time, biological activity of Ca2+-channels will be modulated utilizing both Ca2+-channel agonist and antagonist to evaluate concomitant signal changes.
Cell Biology, Issue 18, cellular MRI, manganese, human embryonic stem cells, cell labeling, cardiology
827
Play Button
Labeling hESCs and hMSCs with Iron Oxide Nanoparticles for Non-Invasive in vivo Tracking with MR Imaging
Authors: Tobias D. Henning, Sophie Boddington, Heike E. Daldrup-Link.
Institutions: Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco.
In recent years, stem cell research has led to a better understanding of developmental biology, various diseases and its potential impact on regenerative medicine. A non-invasive method to monitor the transplanted stem cells repeatedly in vivo would greatly enhance our ability to understand the mechanisms that control stem cell death and identify trophic factors and signaling pathways that improve stem cell engraftment. MR imaging has been proven to be an effective tool for the in vivo depiction of stem cells with near microscopic anatomical resolution. In order to detect stem cells with MR, the cells have to be labeled with cell specific MR contrast agents. For this purpose, iron oxide nanoparticles, such as superparamagnetic iron oxide particles (SPIO), are applied, because of their high sensitivity for cell detection and their excellent biocompatibility. SPIO particles are composed of an iron oxide core and a dextran, carboxydextran or starch coat, and function by creating local field inhomogeneities, that cause a decreased signal on T2-weighted MR images. This presentation will demonstrate techniques for labeling of stem cells with clinically applicable MR contrast agents for subsequent non-invasive in vivo tracking of the labeled cells with MR imaging.
Cell Biology, Issue 13, cell labeling, stem cell, MR imaging, cell tracking, iron oxide, contrast agents, mesenchymal stem cells
685
Play Button
Microfluidic On-chip Capture-cycloaddition Reaction to Reversibly Immobilize Small Molecules or Multi-component Structures for Biosensor Applications
Authors: Carlos Tassa, Monty Liong, Scott Hilderbrand, Jason E. Sandler, Thomas Reiner, Edmund J. Keliher, Ralph Weissleder, Stanley Y. Shaw.
Institutions: Massachusetts General Hospital.
Methods for rapid surface immobilization of bioactive small molecules with control over orientation and immobilization density are highly desirable for biosensor and microarray applications. In this Study, we use a highly efficient covalent bioorthogonal [4+2] cycloaddition reaction between trans-cyclooctene (TCO) and 1,2,4,5-tetrazine (Tz) to enable the microfluidic immobilization of TCO/Tz-derivatized molecules. We monitor the process in real-time under continuous flow conditions using surface plasmon resonance (SPR). To enable reversible immobilization and extend the experimental range of the sensor surface, we combine a non-covalent antigen-antibody capture component with the cycloaddition reaction. By alternately presenting TCO or Tz moieties to the sensor surface, multiple capture-cycloaddition processes are now possible on one sensor surface for on-chip assembly and interaction studies of a variety of multi-component structures. We illustrate this method with two different immobilization experiments on a biosensor chip; a small molecule, AP1497 that binds FK506-binding protein 12 (FKBP12); and the same small molecule as part of an immobilized and in situ-functionalized nanoparticle.
Chemistry, Issue 79, Organic Chemicals, Macromolecular Substances, Chemistry and Materials (General), Surface Plasmon Resonance, Bioorthogonal Chemistry, Diels-Alder Cycloaddition Reaction, Small Molecule Immobilization, Binding Kinetics, Immobilized Nanoparticles
50772
Play Button
MR Molecular Imaging of Prostate Cancer with a Small Molecular CLT1 Peptide Targeted Contrast Agent
Authors: Xueming Wu, Daniel Lindner, Guan-Ping Yu, Susann Brady-Kalnay, Zheng-Rong Lu.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
Tumor extracellular matrix has abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. In this work, we demonstrated effective MR cancer molecular imaging with a small molecular peptide targeted Gd-DOTA monoamide complex as a targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma. We performed the experiment of evaluating the effectiveness of the agent for non-invasive detection of prostate tumor with MRI in a mouse orthotopic PC-3 prostate cancer model. The targeted contrast agent was effective to produce significant tumor contrast enhancement at a low dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for MR molecular imaging of prostate tumor.
Cancer Biology, Issue 79, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Biochemistry, Oncology, Biomedical and Dental Materials, Pharmaceutical Preparations, Diagnosis, MRI, magnetic resonance imaging, molecular imaging, conjugation, CLT1, prostate cancer, cancer, prostate, imaging, clinical techniques, clinical applications
50565
Play Button
Formulation of Diblock Polymeric Nanoparticles through Nanoprecipitation Technique
Authors: Shrirang Karve, Michael E. Werner, Natalie D. Cummings, Rohit Sukumar, Edina C. Wang, Ying-Ao Zhang, Andrew Z. Wang.
Institutions: University of North Carolina School of Medicine, University of North Carolina .
Nanotechnology is a relatively new branch of science that involves harnessing the unique properties of particles that are nanometers in scale (nanoparticles). Nanoparticles can be engineered in a precise fashion where their size, composition and surface chemistry can be carefully controlled. This enables unprecedented freedom to modify some of the fundamental properties of their cargo, such as solubility, diffusivity, biodistribution, release characteristics and immunogenicity. Since their inception, nanoparticles have been utilized in many areas of science and medicine, including drug delivery, imaging, and cell biology1-4. However, it has not been fully utilized outside of "nanotechnology laboratories" due to perceived technical barrier. In this article, we describe a simple method to synthesize a polymer based nanoparticle platform that has a wide range of potential applications. The first step is to synthesize a diblock co-polymer that has both a hydrophobic domain and hydrophilic domain. Using PLGA and PEG as model polymers, we described a conjugation reaction using EDC/NHS chemistry5 (Fig 1). We also discuss the polymer purification process. The synthesized diblock co-polymer can self-assemble into nanoparticles in the nanoprecipitation process through hydrophobic-hydrophilic interactions. The described polymer nanoparticle is very versatile. The hydrophobic core of the nanoparticle can be utilized to carry poorly soluble drugs for drug delivery experiments6. Furthermore, the nanoparticles can overcome the problem of toxic solvents for poorly soluble molecular biology reagents, such as wortmannin, which requires a solvent like DMSO. However, DMSO can be toxic to cells and interfere with the experiment. These poorly soluble drugs and reagents can be effectively delivered using polymer nanoparticles with minimal toxicity. Polymer nanoparticles can also be loaded with fluorescent dye and utilized for intracellular trafficking studies. Lastly, these polymer nanoparticles can be conjugated to targeting ligands through surface PEG. Such targeted nanoparticles can be utilized to label specific epitopes on or in cells7-10.
Bioengineering, Issue 55, Nanoparticles, nanomedicine, drug delivery, polymeric micelles, polymeric nanoparticles, diblock co-polymers, nanoplatform, nanoparticle molecular imaging, polymer conjugation.
3398
Play Button
Multimodal Imaging of Stem Cell Implantation in the Central Nervous System of Mice
Authors: Nathalie De Vocht, Kristien Reekmans, Irene Bergwerf, Jelle Praet, Chloé Hoornaert, Debbie Le Blon, Jasmijn Daans, Zwi Berneman, Annemie Van der Linden, Peter Ponsaerts.
Institutions: University of Antwerp, University of Antwerp.
During the past decade, stem cell transplantation has gained increasing interest as primary or secondary therapeutic modality for a variety of diseases, both in preclinical and clinical studies. However, to date results regarding functional outcome and/or tissue regeneration following stem cell transplantation are quite diverse. Generally, a clinical benefit is observed without profound understanding of the underlying mechanism(s)1. Therefore, multiple efforts have led to the development of different molecular imaging modalities to monitor stem cell grafting with the ultimate aim to accurately evaluate survival, fate and physiology of grafted stem cells and/or their micro-environment. Changes observed in one or more parameters determined by molecular imaging might be related to the observed clinical effect. In this context, our studies focus on the combined use of bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and histological analysis to evaluate stem cell grafting. BLI is commonly used to non-invasively perform cell tracking and monitor cell survival in time following transplantation2-7, based on a biochemical reaction where cells expressing the Luciferase-reporter gene are able to emit light following interaction with its substrate (e.g. D-luciferin)8, 9. MRI on the other hand is a non-invasive technique which is clinically applicable10 and can be used to precisely locate cellular grafts with very high resolution11-15, although its sensitivity highly depends on the contrast generated after cell labeling with an MRI contrast agent. Finally, post-mortem histological analysis is the method of choice to validate research results obtained with non-invasive techniques with highest resolution and sensitivity. Moreover end-point histological analysis allows us to perform detailed phenotypic analysis of grafted cells and/or the surrounding tissue, based on the use of fluorescent reporter proteins and/or direct cell labeling with specific antibodies. In summary, we here visually demonstrate the complementarities of BLI, MRI and histology to unravel different stem cell- and/or environment-associated characteristics following stem cell grafting in the CNS of mice. As an example, bone marrow-derived stromal cells, genetically engineered to express the enhanced Green Fluorescent Protein (eGFP) and firefly Luciferase (fLuc), and labeled with blue fluorescent micron-sized iron oxide particles (MPIOs), will be grafted in the CNS of immune-competent mice and outcome will be monitored by BLI, MRI and histology (Figure 1).
Neuroscience, Issue 64, Stem cell biology, Cell labeling, Cell Transplantation, Brain, Bioluminescence Imaging, Magnetic Resonance Imaging, Histology
3906
Play Button
Registered Bioimaging of Nanomaterials for Diagnostic and Therapeutic Monitoring
Authors: Michael Boska, Yutong Liu, Mariano Uberti, Balarininvasa R. Sajja, Shantanu Balkundi, JoEllyn McMillan, Howard E. Gendelman.
Institutions: University of Nebraska Medical Center, University of Nebraska Medical Center.
Nanomedications can be carried by blood borne monocyte-macrophages into the reticuloendothelial system (RES; spleen, liver, lymph nodes) and to end organs. The latter include the lung, RES, and brain and are operative during human immunodeficiency virus type one (HIV-1) infection. Macrophage entry into tissues is notable in areas of active HIV-1 replication and sites of inflammation. In order to assess the potential of macrophages as nanocarriers, superparamagnetic iron-oxide and/or drug laden particles coated with surfactants were parenterally injected into HIV-1 encephalitic mice. This was done to quantitatively assess particle and drug biodistribution. Magnetic resonance imaging (MRI) test results were validated by histological coregistration and enhanced image processing. End organ disease as typified by altered brain histology were assessed by MRI. The demonstration of robust migration of nanoformulations into areas of focal encephalitis provides '"proof of concept" for the use of advanced bioimaging techniques to monitor macrophage migration. Importantly, histopathological aberrations in brain correlate with bioimaging parameters making the general utility of MRI in studies of cell distribution in disease feasible. We posit that using such methods can provide a real time index of disease burden and therapeutic efficacy with translational potential to humans.
Infectious Disease, Issue 46, neuroimaging, mouse, magnetic resonance imaging, magnetic resonance spectroscopy
2459
Play Button
Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition
Authors: A. Wouter Maijenburg, Eddy J.B. Rodijk, Michiel G. Maas, Johan E. ten Elshof.
Institutions: University of Twente.
Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution.
Physics, Issue 87, Multicomponent nanowires, electrochemistry, sol-gel processes, photocatalysis, photochemistry, H2 evolution
51547
Play Button
Synthesis of an In vivo MRI-detectable Apoptosis Probe
Authors: Justin Lam, Paul C. Simpson, Phillip C. Yang, Rajesh Dash.
Institutions: Stanford University Medical Center, University of California, San Francisco , San Francisco VAMC.
Cellular apoptosis is a prominent feature of many diseases, and this programmed cell death typically occurs before clinical manifestations of disease are evident. A means to detect apoptosis in its earliest, reversible stages would afford a pre-clinical 'window' during which preventive or therapeutic measures could be taken to protect the heart from permanent damage. We present herein a simple and robust method to conjugate human Annexin V (ANX), which avidly binds to cells in the earliest, reversible stages of apoptosis, to superparamagnetic iron oxide (SPIO) nanoparticles, which serve as an MRI-detectable contrast agent. The conjugation method begins with an oxidation of the SPIO nanoparticles, which oxidizes carboxyl groups on the polysaccharide shell of SPIO. Purified ANX protein is then added in the setting of a sodium borate solution to facilitate covalent interaction of ANX with SPIO in a reducing buffer. A final reduction step with sodium borohydride is performed to complete the reduction, and then the reaction is quenched. Unconjugated ANX is removed from the mix by microcentrifuge filtration. The size and purity of the ANX-SPIO product is verified by dynamic light scattering (DLS). This method does not require addition to, or modification of, the polysaccharide SPIO shell, as opposed to cross-linked iron oxide particle conjugation methods or biotin-labeled nanoparticles. As a result, this method represents a simple, robust approach that may be extended to conjugation of other proteins of interest.
Molecular Biology, Issue 65, Biomedical Engineering, conjugation, annexin, iron oxide, nanoparticle, MRI, molecular imaging
3775
Play Button
Sequence-specific Labeling of Nucleic Acids and Proteins with Methyltransferases and Cofactor Analogues
Authors: Gisela Maria Hanz, Britta Jung, Anna Giesbertz, Matyas Juhasz, Elmar Weinhold.
Institutions: RWTH Aachen University.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.
Biochemistry, Issue 93, S-adenosyl-l-methionine, AdoMet, SAM, aziridine cofactor, double activated cofactor, methyltransferase, DNA methylation, protein methylation, biotin labeling, fluorescence labeling, SMILing, mTAG
52014
Play Button
Nanomechanics of Drug-target Interactions and Antibacterial Resistance Detection
Authors: Joseph W. Ndieyira, Moyu Watari, Rachel A. McKendry.
Institutions: University College London.
The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity1-5. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions. Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures1,6,7. We developed a new model1 which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful agents to combat superbug infections.
Immunology, Issue 80, Engineering, Technology, Diagnostic Techniques and Procedures, Early Diagnosis, Bacterial Infections and Mycoses, Lipids, Amino Acids, Peptides, and Proteins, Chemical Actions and Uses, Diagnosis, Therapeutics, Surface stress, vancomycin, mucopeptides, cantilever sensor
50719
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
51344
Play Button
Monitoring Dendritic Cell Migration using 19F / 1H Magnetic Resonance Imaging
Authors: Helmar Waiczies, Martin Guenther, Julia Skodowski, Stefano Lepore, Andreas Pohlmann, Thoralf Niendorf, Sonia Waiczies.
Institutions: A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Max Delbrück Center for Molecular Medicine.
Continuous advancements in noninvasive imaging modalities such as magnetic resonance imaging (MRI) have greatly improved our ability to study physiological or pathological processes in living organisms. MRI is also proving to be a valuable tool for capturing transplanted cells in vivo. Initial cell labeling strategies for MRI made use of contrast agents that influence the MR relaxation times (T1, T2, T2*) and lead to an enhancement (T1) or depletion (T2*) of signal where labeled cells are present. T2* enhancement agents such as ultrasmall iron oxide agents (USPIO) have been employed to study cell migration and some have also been approved by the FDA for clinical application. A drawback of T2* agents is the difficulty to distinguish the signal extinction created by the labeled cells from other artifacts such as blood clots, micro bleeds or air bubbles. In this article, we describe an emerging technique for tracking cells in vivo that is based on labeling the cells with fluorine (19F)-rich particles. These particles are prepared by emulsifying perfluorocarbon (PFC) compounds and then used to label cells, which subsequently can be imaged by 19F MRI. Important advantages of PFCs for cell tracking in vivo include (i) the absence of carbon-bound 19F in vivo, which then yields background-free images and complete cell selectivityand(ii) the possibility to quantify the cell signal by 19F MR spectroscopy.
Molecular Biology, Issue 73, Immunology, Cellular Biology, Physiology, Anatomy, Biomedical Engineering, Hematology, nuclear magnetic resonance, NMR, Fluorine, dendritic cells, migration, lymph nodes, magnetic resonance imaging, MRI, magnetic resonance spectroscopy, MRS, spectroscopy, imaging, cell tracking, clinical techniques
50251
Play Button
Therapeutic Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin Nanoparticles
Authors: Jing Xu, Mansoor Amiji.
Institutions: Northeastern University.
More than 32,000 patients are diagnosed with pancreatic cancer in the United States per year and the disease is associated with very high mortality 1. Urgent need exists to develop novel clinically-translatable therapeutic strategies that can improve on the dismal survival statistics of pancreatic cancer patients. Although gene therapy in cancer has shown a tremendous promise, the major challenge is in the development of safe and effective delivery system, which can lead to sustained transgene expression. Gelatin is one of the most versatile natural biopolymer, widely used in food and pharmaceutical products. Previous studies from our laboratory have shown that type B gelatin could physical encapsulate DNA, which preserved the supercoiled structure of the plasmid and improved transfection efficiency upon intracellular delivery. By thiolation of gelatin, the sulfhydryl groups could be introduced into the polymer and would form disulfide bond within nanoparticles, which stabilizes the whole complex and once disulfide bond is broken due to the presence of glutathione in cytosol, payload would be released 2-5. Poly(ethylene glycol) (PEG)-modified GENS, when administered into the systemic circulation, provides long-circulation times and preferentially targets to the tumor mass due to the hyper-permeability of the neovasculature by the enhanced permeability and retention effect 6. Studies have shown over-expression of the epidermal growth factor receptor (EGFR) on Panc-1 human pancreatic adenocarcinoma cells 7. In order to actively target pancreatic cancer cell line, EGFR specific peptide was conjugated on the particle surface through a PEG spacer.8 Most anti-tumor gene therapies are focused on administration of the tumor suppressor genes, such as wild-type p53 (wt-p53), to restore the pro-apoptotic function in the cells 9. The p53 mechanism functions as a critical signaling pathway in cell growth, which regulates apoptosis, cell cycle arrest, metabolism and other processes 10. In pancreatic cancer, most cells have mutations in p53 protein, causing the loss of apoptotic activity. With the introduction of wt-p53, the apoptosis could be repaired and further triggers cell death in cancer cells 11. Based on the above rationale, we have designed EGFR targeting peptide-modified thiolated gelatin nanoparticles for wt-p53 gene delivery and evaluated delivery efficiency and transfection in Panc-1 cells.
Bioengineering, Issue 59, Gelatin Nanoparticle, Gene Therapy, Targeted Delivery, Pancreatic Cancer, Epidermal Growth Factor Receptor, EGFR
3612
Play Button
In vivo Macrophage Imaging Using MR Targeted Contrast Agent for Longitudinal Evaluation of Septic Arthritis
Authors: Guillaume Bierry, Sophie Lefevre, Jean-Louis Dietemann, François Jehl.
Institutions: University Hospital of Strasbourg, University of Strasbourg, University Hospital of Strasbourg.
Macrophages are key-cells in the initiation, the development and the regulation of the inflammatory response to bacterial infection. Macrophages are intensively and increasingly recruited in septic joints from the early phases of infection and the infiltration is supposed to regress once efficient removal of the pathogens is obtained. The ability to identify in vivo macrophage activity in an infected joint can therefore provide two main applications: early detection of acute synovitis and monitoring of therapy. In vivo noninvasive detection of macrophages can be performed with magnetic resonance imaging using iron nanoparticles such as ultrasmall superparamagnetic iron oxide (USPIO). After intravascular or intraarticular administration, USPIO are specifically phagocytized by activated macrophages, and, due to their magnetic properties, induce signal changes in tissues presenting macrophage infiltration. A quantitative evaluation of the infiltrate is feasible, as the area with signal loss (number of dark pixels) observed on gradient echo MR images after particles injection is correlated with the amount of iron within the tissue and therefore reflects the number of USPIO-loaded cells. We present here a protocol to perform macrophage imaging using USPIO-enhanced MR imaging in an animal model of septic arthritis, allowing an initial and longitudinal in vivo noninvasive evaluation of macrophages infiltration and an assessment of therapy action.
Medicine, Issue 80, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Diagnostic Imaging, Musculoskeletal System, Bacterial Infections and Mycoses, Macrophage, MR imaging, infection, arthritis, USPIO, imaging, clinical techniques
50296
Play Button
Labeling Stem Cells with Ferumoxytol, an FDA-Approved Iron Oxide Nanoparticle
Authors: Rosalinda T. Castaneda, Aman Khurana, Ramsha Khan, Heike E. Daldrup-Link.
Institutions: Molecular Imaging Program at Stanford (MIPS) , Stanford University .
Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages 1. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles 2-4. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images 5. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM-1 sec-1 strength4. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure 6. Our group has applied this agent in an “off label” use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.
Medicine, Issue 57, USPIO, cell labeling, MR imaging, MRI, molecular imaging, iron oxides, ferumoxytol, cellular imaging, nanoparticles
3482
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
Fabricating Complex Culture Substrates Using Robotic Microcontact Printing (R-µCP) and Sequential Nucleophilic Substitution
Authors: Gavin T. Knight, Tyler Klann, Jason D. McNulty, Randolph S. Ashton.
Institutions: University of Wisconsin, Madison, University of Wisconsin, Madison.
In tissue engineering, it is desirable to exhibit spatial control of tissue morphology and cell fate in culture on the micron scale. Culture substrates presenting grafted poly(ethylene glycol) (PEG) brushes can be used to achieve this task by creating microscale, non-fouling and cell adhesion resistant regions as well as regions where cells participate in biospecific interactions with covalently tethered ligands. To engineer complex tissues using such substrates, it will be necessary to sequentially pattern multiple PEG brushes functionalized to confer differential bioactivities and aligned in microscale orientations that mimic in vivo niches. Microcontact printing (μCP) is a versatile technique to pattern such grafted PEG brushes, but manual μCP cannot be performed with microscale precision. Thus, we combined advanced robotics with soft-lithography techniques and emerging surface chemistry reactions to develop a robotic microcontact printing (R-μCP)-assisted method for fabricating culture substrates with complex, microscale, and highly ordered patterns of PEG brushes presenting orthogonal ‘click’ chemistries. Here, we describe in detail the workflow to manufacture such substrates.
Bioengineering, Issue 92, Robotic microcontact printing, R-μCP, click chemistry, surface chemistry, tissue engineering, micropattern, advanced manufacturing
52186
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
50588
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
50668
Play Button
Harmonic Nanoparticles for Regenerative Research
Authors: Flavio Ronzoni, Thibaud Magouroux, Remi Vernet, Jérôme Extermann, Darragh Crotty, Adriele Prina-Mello, Daniel Ciepielewski, Yuri Volkov, Luigi Bonacina, Jean-Pierre Wolf, Marisa Jaconi.
Institutions: University of Geneva, University of Geneva, École Polytechnique Fédérale de Lausanne, Trinity College Dublin, Trinity College Dublin, Nikon AG Instruments.
In this visualized experiment, protocol details are provided for in vitro labeling of human embryonic stem cells (hESC) with second harmonic generation nanoparticles (HNPs). The latter are a new family of probes recently introduced for labeling biological samples for multi-photon imaging. HNPs are capable of doubling the frequency of excitation light by the nonlinear optical process of second harmonic generation with no restriction on the excitation wavelength. Multi-photon based methodologies for hESC differentiation into cardiac clusters (maintained as long term air-liquid cultures) are presented in detail. In particular, evidence on how to maximize the intense second harmonic (SH) emission of isolated HNPs during 3D monitoring of beating cardiac tissue in 3D is shown. The analysis of the resulting images to retrieve 3D displacement patterns is also detailed.
Bioengineering, Issue 87, multi-photon imaging, human embryonic stem cells (ESC), nanoparticles, embryoid bodies (EBs), cardiomyocyte differentiation, cardiac contraction, air-liquid cultures
51333
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.