JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Improving Enzymatic Hydrolysis of Corn Stover Pretreated by Ethylene Glycol-Perchloric Acid-Water Mixture.
Appl. Biochem. Biotechnol.
PUBLISHED: 08-30-2014
To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.
Authors: Sang-Hyuck Park, Rebecca Garlock Ong, Chuansheng Mei, Mariam Sticklen.
Published: 07-23-2014
ABSTRACT
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.
23 Related JoVE Articles!
Play Button
GENPLAT: an Automated Platform for Biomass Enzyme Discovery and Cocktail Optimization
Authors: Jonathan Walton, Goutami Banerjee, Suzana Car.
Institutions: Michigan State University, Michigan State University.
The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase).
Bioengineering, Issue 56, cellulase, cellobiohydrolase, glucanase, xylanase, hemicellulase, experimental design, biomass, bioenergy, corn stover, glycosyl hydrolase
3314
Play Button
Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis
Authors: Derek D. Lovingood, Jeffrey R. Owens, Michael Seeber, Konstantin G. Kornev, Igor Luzinov.
Institutions: Oak Ridge Institute for Science and Education, Airbase Technology Division, Clemson University.
Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces.
Chemistry, Issue 82, Chemistry, chemical manufacturing, chemistry (general), materials (general), nanocomposites, catalysts (chemical), chemistry of compounds, Chemistry and Materials (General), Composite Materials, Inorganic, Organic and Physical Chemistry, Engineering (General), Microwave, nanoparticle, silica, silicic acid, NP, SiO2, synthesis
51022
Play Button
Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation
Authors: Karthik Pillai, Fernando Navarro Arzate, Wei Zhang, Scott Renneckar.
Institutions: Virginia Tech, Virginia Tech, Illinois Institute of Technology- Moffett Campus, University of Guadalajara, Virginia Tech, Virginia Tech.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.
Plant Biology, Issue 88, nanocellulose, thin films, quartz crystal microbalance, layer-by-layer, LbL
51257
Play Button
Split-and-pool Synthesis and Characterization of Peptide Tertiary Amide Library
Authors: Yu Gao, Thomas Kodadek.
Institutions: The Scripps Research Institute.
Peptidomimetics are great sources of protein ligands. The oligomeric nature of these compounds enables us to access large synthetic libraries on solid phase by using combinatorial chemistry. One of the most well studied classes of peptidomimetics is peptoids. Peptoids are easy to synthesize and have been shown to be proteolysis-resistant and cell-permeable. Over the past decade, many useful protein ligands have been identified through screening of peptoid libraries. However, most of the ligands identified from peptoid libraries do not display high affinity, with rare exceptions. This may be due, in part, to the lack of chiral centers and conformational constraints in peptoid molecules. Recently, we described a new synthetic route to access peptide tertiary amides (PTAs). PTAs are a superfamily of peptidomimetics that include but are not limited to peptides, peptoids and N-methylated peptides. With side chains on both α-carbon and main chain nitrogen atoms, the conformation of these molecules are greatly constrained by sterical hindrance and allylic 1,3 strain. (Figure 1) Our study suggests that these PTA molecules are highly structured in solution and can be used to identify protein ligands. We believe that these molecules can be a future source of high-affinity protein ligands. Here we describe the synthetic method combining the power of both split-and-pool and sub-monomer strategies to synthesize a sample one-bead one-compound (OBOC) library of PTAs.
Chemistry, Issue 88, Split-and-pool synthesis, peptide tertiary amide, PTA, peptoid, high-throughput screening, combinatorial library, solid phase, triphosgene (BTC), one-bead one-compound, OBOC
51299
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
51653
Play Button
Expression of Recombinant Cellulase Cel5A from Trichoderma reesei in Tobacco Plants
Authors: Megan Garvey, Johannes Klinger, Holger Klose, Rainer Fischer, Ulrich Commandeur.
Institutions: RWTH Aachen University, Fraunhofer Institute for Molecular Biology and Applied Ecology.
Cellulose degrading enzymes, cellulases, are targets of both research and industrial interests. The preponderance of these enzymes in difficult-to-culture organisms, such as hyphae-building fungi and anaerobic bacteria, has hastened the use of recombinant technologies in this field. Plant expression methods are a desirable system for large-scale production of enzymes and other industrially useful proteins. Herein, methods for the transient expression of a fungal endoglucanase, Trichoderma reesei Cel5A, in Nicotiana tabacum are demonstrated. Successful protein expression is shown, monitored by fluorescence using an mCherry-enzyme fusion protein. Additionally, a set of basic tests are used to examine the activity of transiently expressed T. reesei Cel5A, including SDS-PAGE, Western blotting, zymography, as well as fluorescence and dye-based substrate degradation assays. The system described here can be used to produce an active cellulase in a short time period, so as to assess the potential for further production in plants through constitutive or inducible expression systems.
Environmental Sciences, Issue 88, heterologous expression, endoplasmic reticulum, endoglucanase, cellulose, glycosyl-hydrolase, fluorescence, cellulase, Trichoderma reesei, tobacco plants
51711
Play Button
Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production
Authors: M. Toufiq Reza, Maja Werner, Marcel Pohl, Jan Mumme.
Institutions: Leibniz Institute for Agricultural Engineering.
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.
Environmental Sciences, Issue 88, Biomethane, Hydrothermal Carbonization (HTC), Calorific Value, Lignocellulosic Biomass, UASS, Anaerobic Digestion
51734
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
52183
Play Button
Electrochemically and Bioelectrochemically Induced Ammonium Recovery
Authors: Sylvia Gildemyn, Amanda K. Luther, Stephen J. Andersen, Joachim Desloover, Korneel Rabaey.
Institutions: Ghent University, Rutgers University.
Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems.
Chemistry, Issue 95, Electrochemical extraction, bioelectrochemical system, bioanode, ammonium recovery, microbial electrocatalysis, nutrient recovery, electrolysis cell
52405
Play Button
Characteristics of Precipitation-formed Polyethylene Glycol Microgels Are Controlled by Molecular Weight of Reactants
Authors: Susan Thompson, Jessica Stukel, Abrar AlNiemi, Rebecca Kuntz Willits.
Institutions: The University of Akron, Saint Vincent Saint Mary's High School.
This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.
Bioengineering, Issue 82, hydrogels, microgels, polyethylene glycol, molecuar weight, photopolymerized precipitation reaction, polymers, polydispersity index
51002
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
50960
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin
Authors: Cliff E. Foster, Tina M. Martin, Markus Pauly.
Institutions: Michigan State University (MSU), Michigan State University (MSU).
The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation1 and other products such as biocomposite materials7. Plant biomass remains one of the greatest untapped reserves on the planet4. It is mostly comprised of cell walls that are composed of energy rich polymers including cellulose, various hemicelluloses (matrix polysaccharides, and the polyphenol lignin6 and thus sometimes termed lignocellulosics. However, plant cell walls have evolved to be recalcitrant to degradation as walls provide tensile strength to cells and the entire plants, ward off pathogens, and allow water to be transported throughout the plant; in the case of trees up to more the 100 m above ground level. Due to the various functions of walls, there is an immense structural diversity within the walls of different plant species and cell types within a single plant4. Hence, depending of what crop species, crop variety, or plant tissue is used for a biorefinery, the processing steps for depolymerization by chemical/enzymatic processes and subsequent fermentation of the various sugars to liquid biofuels need to be adjusted and optimized. This fact underpins the need for a thorough characterization of plant biomass feedstocks. Here we describe a comprehensive analytical methodology that enables the determination of the composition of lignocellulosics and is amenable to a medium to high-throughput analysis. In this first part we focus on the analysis of the polyphenol lignin (Figure 1). The method starts of with preparing destarched cell wall material. The resulting lignocellulosics are then split up to determine its lignin content by acetylbromide solubilization3, and its lignin composition in terms of its syringyl, guaiacyl- and p-hydroxyphenyl units5. The protocol for analyzing the carbohydrates in lignocellulosic biomass including cellulose content and matrix polysaccharide composition is discussed in Part II2.
Plant Biology, Issue 37, cell walls, lignin, GC-MS, biomass, compositional analysis
1745
Play Button
Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part II: Carbohydrates
Authors: Cliff E. Foster, Tina M. Martin, Markus Pauly.
Institutions: Michigan State University (MSU), Michigan State University (MSU).
The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation2 and other products such as biocomposite materials6. Plant biomass remains one of the greatest untapped reserves on the planet4. It is mostly comprised of cell walls that are composed of energy rich polymers including cellulose, various hemicelluloses, and the polyphenol lignin5 and thus sometimes termed lignocellulosics. However, plant cell walls have evolved to be recalcitrant to degradation as walls contribute extensively to the strength and structural integrity of the entire plant. Despite its necessary rigidity, the cell wall is a highly dynamic entity that is metabolically active and plays crucial roles in numerous cell activities such as plant growth and differentiation5. Due to the various functions of walls, there is an immense structural diversity within the walls of different plant species and cell types within a single plant4. Hence, depending of what crop species, crop variety, or plant tissue is used for a biorefinery, the processing steps for depolymerisation by chemical/enzymatic processes and subsequent fermentation of the various sugars to liquid biofuels need to be adjusted and optimized. This fact underpins the need for a thorough characterization of plant biomass feedstocks. Here we describe a comprehensive analytical methodology that enables the determination of the composition of lignocellulosics and is amenable to a medium to high-throughput analysis (Figure 1). The method starts of with preparing destarched cell wall material. The resulting lignocellulosics are then split up to determine its monosaccharide composition of the hemicelluloses and other matrix polysaccharides1, and its content of crystalline cellulose7. The protocol for analyzing the lignin components in lignocellulosic biomass is discussed in Part I3.
Plant Biology, Issue 37, cell walls, polysaccharide, cellulose, hemicellulose, sugar composition, GC-MS
1837
Play Button
Label-free in situ Imaging of Lignification in Plant Cell Walls
Authors: Martin Schmidt, Pradeep Perera, Adam M. Schwartzberg, Paul D. Adams, P. James Schuck.
Institutions: University of California, Berkeley, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels1-6. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals4. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation7. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor8 and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications9-11. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non-destructive and comparatively inexpensive measurements with minimal sample preparation, giving insights into chemical composition and molecular structure in a close to native state. Chemical imaging by confocal Raman microscopy has been previously used for the visualization of the spatial distribution of cellulose and lignin in wood cell walls12-14. Based on these earlier results, we have recently adopted this method to compare lignification in wild type and lignin-deficient transgenic Populus trichocarpa (black cottonwood) stem wood15. Analyzing the lignin Raman bands16,17 in the spectral region between 1,600 and 1,700 cm-1, lignin signal intensity and localization were mapped in situ. Our approach visualized differences in lignin content, localization, and chemical composition. Most recently, we demonstrated Raman imaging of cell wall polymers in Arabidopsis thaliana with lateral resolution that is sub-μm18. Here, this method is presented affording visualization of lignin in plant cell walls and comparison of lignification in different tissues, samples or species without staining or labeling of the tissues.
Plant Biology, Issue 45, Raman microscopy, lignin, poplar wood, Arabidopsis thaliana
2064
Play Button
Agar-Block Microcosms for Controlled Plant Tissue Decomposition by Aerobic Fungi
Authors: Jonathan S. Schilling, K. Brook Jacobson.
Institutions: University of Minnesota.
The two principal methods for studying fungal biodegradation of lignocellulosic plant tissues were developed for wood preservative testing (soil-block; agar-block). It is well-accepted that soil-block microcosms yield higher decay rates, fewer moisture issues, lower variability among studies, and higher thresholds of preservative toxicity. Soil-block testing is thus the more utilized technique and has been standardized by American Society for Testing and Materials (ASTM) (method D 1413-07). The soil-block design has drawbacks, however, using locally-variable soil sources and in limiting the control of nutrients external (exogenous) to the decaying tissues. These drawbacks have emerged as a problem in applying this method to other, increasingly popular research aims. These modern aims include degrading lignocellulosics for bioenergy research, testing bioremediation of co-metabolized toxics, evaluating oxidative mechanisms, and tracking translocated elements along hyphal networks. Soil-blocks do not lend enough control in these applications. A refined agar-block approach is necessary. Here, we use the brown rot wood-degrading fungus Serpula lacrymans to degrade wood in agar-block microcosms, using deep Petri dishes with low-calcium agar. We test the role of exogenous gypsum on decay in a time-series, to demonstrate the utility and expected variability. Blocks from a single board rip (longitudinal cut) are conditioned, weighed, autoclaved, and introduced aseptically atop plastic mesh. Fungal inoculations are at each block face, with exogenous gypsum added at interfaces. Harvests are aseptic until the final destructive harvest. These microcosms are designed to avoid block contact with agar or Petri dish walls. Condensation is minimized during plate pours and during incubation. Finally, inoculum/gypsum/wood spacing is minimized but without allowing contact. These less technical aspects of agar-block design are also the most common causes of failure and the key source of variability among studies. Video publication is therefore useful in this case, and we demonstrate low-variability, high-quality results.
Plant Biology, Issue 48, Lignocellulose, biomass, wood, fungi, filamentous, biodegradation, petri, microcosm
2283
Play Button
Cryopreservation of Mouse Embryos by Ethylene Glycol-Based Vitrification
Authors: Keiji Mochida, Ayumi Hasegawa, Kyuichi Taguma, Atsushi Yoshiki, Atsuo Ogura.
Institutions: RIKEN BioResource Center.
Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s1, then followed by vitrification methods developed in the late 1980s2. Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained3, and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature4. Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos5. It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and technicians who need preservation of mouse strains for later use in a safe and cost-effective manner.
Developmental Biology, Issue 57, mouse, embryo, cryopreservation, ethylene glycol, vitrification
3155
Play Button
High-throughput Saccharification Assay for Lignocellulosic Materials
Authors: Leonardo D. Gomez, Caragh Whitehead, Philip Roberts, Simon J. McQueen-Mason.
Institutions: University of York.
Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest 1. In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification 2. These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system. This automated platform works with milligram amounts of biomass, performing ball milling under controlled conditions to reduce the plant materials to a standardised particle size in a reproducible manner. Once the samples are ground, the automated formatting robot dispenses specified and recorded amounts of material into the corresponding wells of 96 deep well plate (Figure 1). Normally, we dispense the same material into 4 wells to have 4 replicates for analysis. Once the plates are filled with the plant material in the desired layout, they are manually moved to a liquid handling station (Figure 2). In this station the samples are subjected to a mild pretreatment with either dilute acid or alkaline and incubated at temperatures of up to 90°C. The pretreatment solution is subsequently removed and the samples are rinsed with buffer to return them to a suitable pH for hydrolysis. The samples are then incubated with an enzyme mixture for a variable length of time at 50°C. An aliquot is taken from the hydrolyzate and the reducing sugars are automatically determined by the MBTH colorimetric method.
Molecular Biology, Issue 53, Saccharification, lignocellulose, high-throughput, glycosyl hydrolases, biomass, biofuels
3240
Play Button
Generation and Recovery of β-cell Spheroids From Step-growth PEG-peptide Hydrogels
Authors: Asad Raza, Chien-Chi Lin.
Institutions: Indiana University - Purdue University at Indianapolis.
Hydrogels are hydrophilic crosslinked polymers that provide a three-dimensional microenvironment with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives are increasingly used for a variety of tissue engineering applications, in part due to their tunable and cytocompatible properties. In this protocol, we utilized thiol-ene step-growth photopolymerizations to fabricate PEG-peptide hydrogels for encapsulating pancreatic MIN6 b-cells. The gels were formed by 4-arm PEG-norbornene (PEG4NB) macromer and a chymotrypsin-sensitive peptide crosslinker (CGGYC). The hydrophilic and non-fouling nature of PEG offers a cytocompatible microenvironment for cell survival and proliferation in 3D, while the use of chymotrypsin-sensitive peptide sequence (CGGY↓C, arrow indicates enzyme cleavage site, while terminal cysteine residues were added for thiol-ene crosslinking) permits rapid recovery of cell constructs forming within the hydrogel. The following protocol elaborates techniques for: (1) Encapsulation of MIN6 β-cells in thiol-ene hydrogels; (2) Qualitative and quantitative cell viability assays to determine cell survival and proliferation; (3) Recovery of cell spheroids using chymotrypsin-mediated gel erosion; and (4) Structural and functional analysis of the recovered spheroids.
Biomedical Engineering, Issue 70, Bioengineering, Tissue Engineering, Cellular Biology, Molecular Biology, Biomaterials, beta cells, β-cell, PEG, PEG-peptide hydrogels, hydrogel, MIN6, poylmers, peptides, spheroids, pancreas
50081
Play Button
Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture
Authors: Graham Bailes, Margaret Lind, Andrew Ely, Marianne Powell, Jennifer Moore-Kucera, Carol Miles, Debra Inglis, Marion Brodhagen.
Institutions: Western Washington University, Washington State University Northwestern Research and Extension Center, Texas Tech University.
Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.
Microbiology, Issue 75, Plant Biology, Environmental Sciences, Agricultural Sciences, Soil Science, Molecular Biology, Cellular Biology, Genetics, Mycology, Fungi, Bacteria, Microorganisms, Biodegradable plastic, biodegradable mulch, compostable plastic, compostable mulch, plastic degradation, composting, breakdown, soil, 18S ribosomal DNA, isolation, culture
50373
Play Button
Particles without a Box: Brush-first Synthesis of Photodegradable PEG Star Polymers under Ambient Conditions
Authors: Jenny Liu, Angela Xiaodi Gao, Jeremiah A. Johnson.
Institutions: Massachusetts Institute of Technology.
Convenient methods for the rapid, parallel synthesis of diversely functionalized nanoparticles will enable discovery of novel formulations for drug delivery, biological imaging, and supported catalysis. In this report, we demonstrate parallel synthesis of brush-arm star polymer (BASP) nanoparticles by the "brush-first" method. In this method, a norbornene-terminated poly(ethylene glycol) (PEG) macromonomer (PEG-MM) is first polymerized via ring-opening metathesis polymerization (ROMP) to generate a living brush macroinitiator. Aliquots of this initiator stock solution are added to vials that contain varied amounts of a photodegradable bis-norbornene crosslinker. Exposure to crosslinker initiates a series of kinetically-controlled brush+brush and star+star coupling reactions that ultimately yields BASPs with cores comprised of the crosslinker and coronas comprised of PEG. The final BASP size depends on the amount of crosslinker added. We carry out the synthesis of three BASPs on the benchtop with no special precautions to remove air and moisture. The samples are characterized by gel permeation chromatography (GPC); results agreed closely with our previous report that utilized inert (glovebox) conditions. Key practical features, advantages, and potential disadvantages of the brush-first method are discussed.
Chemistry, Issue 80, Chemical Engineering, Nanoparticles, Polymers, Drug Delivery Systems, Polymerization, polymers, Biomedical and Dental Materials, brush first, polyethylene glycol, photodegradable, ring opening metathesis polymerization, brush polymer, star polymer, drug delivery, gel permeation chromatography, arm first, core functional, photocleavable
50874
Play Button
Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae
Authors: Katerine Napan, Derek Hess, Brian McNeil, Jason C. Quinn.
Institutions: Utah State University.
Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.
Environmental Sciences, Issue 101, algae, heavy metals, Nannochloropsis salina, photobioreactor, flue gas, inductively coupled plasma mass spectrometry, ICPMS, cold vapor atomic absorption spectrometry, CVAAS
52936
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.