JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Intravital imaging of cardiac function at the single-cell level.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.
Related JoVE Video
Computer-aided image analysis algorithm to enhance in vivo diagnosis of plaque erosion by intravascular optical coherence tomography.
Circ Cardiovasc Imaging
PUBLISHED: 07-17-2014
Show Abstract
Hide Abstract
Recent reports show that plaque erosion can be diagnosed in vivo using optical coherence tomography in patients with acute coronary syndrome. However, quantitative optical coherence tomographic image criteria for computer-aided diagnosis of plaque erosion have not been established.
Related JoVE Video
Magnetic ligation method for quantitative detection of microRNAs.
Adv Healthc Mater
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
A magnetic ligation method is utilized for the detection of microRNAs among a complex biological background without polymerase chain reaction or nucleotide modification. The sandwich probes assay can be adapted to analyze a panel of microRNAs associated with cardiovascular diseases in heart tissue samples.
Related JoVE Video
Identifying early changes in myocardial microstructure in hypertensive heart disease.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The transition from healthy myocardium to hypertensive heart disease is characterized by a series of poorly understood changes in myocardial tissue microstructure. Incremental alterations in the orientation and integrity of myocardial fibers can be assessed using advanced ultrasonic image analysis. We used a modified algorithm to investigate left ventricular myocardial microstructure based on analysis of the reflection intensity at the myocardial-pericardial interface on B-mode echocardiographic images. We evaluated the extent to which the novel algorithm can differentiate between normal myocardium and hypertensive heart disease in humans as well as in a mouse model of afterload resistance. The algorithm significantly differentiated between individuals with uncomplicated essential hypertension (N?=?30) and healthy controls (N?=?28), even after adjusting for age and sex (P?=?0.025). There was a trend in higher relative wall thickness in hypertensive individuals compared to controls (P?=?0.08), but no difference between groups in left ventricular mass (P?=?0.98) or total wall thickness (P?=?0.37). In mice, algorithm measurements (P?=?0.026) compared with left ventricular mass (P?=?0.053) more clearly differentiated between animal groups that underwent fixed aortic banding, temporary aortic banding, or sham procedure, on echocardiography at 7 weeks after surgery. Based on sonographic signal intensity analysis, a novel imaging algorithm provides an accessible, non-invasive measure that appears to differentiate normal left ventricular microstructure from myocardium exposed to chronic afterload stress. The algorithm may represent a particularly sensitive measure of the myocardial changes that occur early in the course of disease progression.
Related JoVE Video
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
We demonstrate a compact, ultrahigh speed spectral-domain optical coherence microscopy (SD-OCM) system for multiscale imaging of specimens at 840 nm. Using a high speed 512-pixel line scan camera, an imaging speed of 210,000 A-scans per second was demonstrated. Interchangeable water immersion objectives with magnifications of 10×, 20×, and 40× provided co-registered en face cellular-resolution imaging over several size scales. Volumetric OCM data sets and en face OCM images were demonstrated on both normal and pathological human colon and kidney specimens ex vivo with an axial resolution of ~4.2 µm, and transverse resolutions of ~2.9 µm (10×), ~1.7 µm (20×), and ~1.1 µm (40×) in tissue. In addition, en face OCM images acquired with high numerical aperture over an extended field-of-view (FOV) were demonstrated using image mosaicking. Comparison between en face OCM images among different transverse and axial resolutions was demonstrated, which promises to help the design and evaluation of imaging performance of Fourier domain OCM systems at different resolution regimes.
Related JoVE Video
Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: A 3-vessel optical coherence tomography study.
Am. Heart J.
PUBLISHED: 06-29-2013
Show Abstract
Hide Abstract
Recent studies described different clinical and underlying plaque characteristics between patients with and without plaque rupture presenting with acute coronary syndrome (ACS). In light of the systemic nature of atherosclerosis, we hypothesized that nonculprit plaques might also express different morphological features in these 2 groups of patients.
Related JoVE Video
Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues.
J. Urol.
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
We evaluated the feasibility of using optical coherence tomography and optical coherence microscopy technology to assess human kidney morphology.
Related JoVE Video
Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues.
Cancer Res.
PUBLISHED: 11-05-2010
Show Abstract
Hide Abstract
Three-dimensional (3D) tissue imaging methods are expected to improve surgical management of cancer. In this study, we examined the feasibility of two 3D imaging technologies, optical coherence tomography (OCT) and optical coherence microscopy (OCM), to view human breast specimens based on intrinsic optical contrast. Specifically, we imaged 44 ex vivo breast specimens including 34 benign and 10 malignant lesions with an integrated OCT and OCM system developed in our laboratory. The system enabled 4-?m axial resolution (OCT and OCM) with 14-?m (OCT) and 2-?m (OCM) transverse resolutions, respectively. OCT and OCM images were compared with corresponding histologic sections to identify characteristic features from benign and malignant breast lesions at multiple resolution scales. OCT and OCM provide complimentary information about tissue microstructure, thus showing distinctive patterns for adipose tissue, fibrous stroma, breast lobules and ducts, cysts and microcysts, as well as in situ and invasive carcinomas. The 3D imaging capability of OCT and OCM provided complementary information to individual 2D images, thereby allowing tracking features from different levels to identify low-contrast structures that were difficult to appreciate from single images alone. Our results lay the foundation for future in vivo optical evaluation of breast tissues, using OCT and OCM, which has the potential to guide core needle biopsies, assess surgical margins, and evaluate nodal involvement in breast cancer.
Related JoVE Video
High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe.
Opt Express
PUBLISHED: 04-15-2010
Show Abstract
Hide Abstract
Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at frame rates up to 5 Hz with resolutions of < 4 microm axial and < 2 microm transverse. The system utilized a novel polarization compensation method to combat wavelength dependent source polarization and achieve broadband electro-optic phase modulation compatible with ultrahigh axial resolution. In addition, the system incorporated an auto-focusing feature that enables precise, near real-time alignment of the confocal and coherence gates in tissue, allowing user-friendly optimization of image quality during the imaging procedure. Ex vivo cellular images of human esophagus, colon, and cervix as well as in vivo results from human skin are presented. Finally, the system design is demonstrated with a miniaturized piezoelectric fiber-scanning probe which can be adapted for laparoscopic and endoscopic imaging applications.
Related JoVE Video
Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy.
J Biomed Opt
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex vivo imaging of upper and lower gastrointestinal tract tissues, to establish correlations between OCM imaging and histology, and to provide a baseline for future endoscopic studies. Co-registered OCM and OCT imaging were performed on fresh surgical specimens and endoscopic biopsy specimens, and images were correlated with histology. Imaging was performed at 1.06-microm wavelength with <2-microm transverse and <4-microm axial resolution for OCM, and at 14-microm transverse and <3-microm axial resolution for OCT. Multiple sites on 75 tissue samples from 39 patients were imaged. OCM enabled cellular imaging of specimens from the upper and lower gastrointestinal tracts over a smaller field of view compared to OCT. Squamous cells and their nuclei, goblet cells in Barretts esophagus, gastric pits and colonic crypts, and fine structures in adenocarcinomas were visualized. OCT provided complementary information through assessment of tissue architectural features over a larger field of view. OCM may provide a complementary imaging modality to standard OCT approaches for endoscopic microscopy.
Related JoVE Video
Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy.
J Biomed Opt
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimotos thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 microm axial resolution (OCT and OCM), and 14 microm (OCT) and <2 microm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.
Related JoVE Video
Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation.
J. Neurosci. Methods
PUBLISHED: 01-06-2009
Show Abstract
Hide Abstract
Optical intrinsic signal imaging (OISI) provides two-dimensional, depth-integrated activation maps of brain activity. Optical coherence tomography (OCT) provides depth-resolved, cross-sectional images of functional brain activation. Co-registered OCT and OISI imaging was performed simultaneously on the rat somatosensory cortex through a thinned skull during forepaw electrical stimulation. Fractional signal change measurements made by OCT revealed a functional signal that correlates well with that of the intrinsic hemodynamic signals and provides depth-resolved, layer-specific dynamics in the functional activation patterns indicating retrograde vessel dilation. OCT is a promising a new technology which provides complementary information to OISI for functional neuroimaging.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.