JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A histone methylation network regulates transgenerational epigenetic memory in C. elegans.
Cell Rep
PUBLISHED: 01-30-2014
Show Abstract
Hide Abstract
How epigenetic information is transmitted from generation to generation remains largely unknown. Deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase spr-5 leads to inherited accumulation of the euchromatic H3K4me2 mark and progressive decline in fertility. Here, we identified multiple chromatin-modifying factors, including H3K4me1/me2 and H3K9me3 methyltransferases, an H3K9me3 demethylase, and an H3K9me reader, which either suppress or accelerate the progressive transgenerational phenotypes of spr-5 mutant worms. Our findings uncover a network of chromatin regulators that control the transgenerational flow of epigenetic information and suggest that the balance between euchromatic H3K4 and heterochromatic H3K9 methylation regulates transgenerational effects on fertility.
Related JoVE Video
Emerging roles for chromatin as a signal integration and storage platform.
Nat. Rev. Mol. Cell Biol.
PUBLISHED: 07-13-2013
Show Abstract
Hide Abstract
Cells of a multicellular organism, all containing nearly identical genetic information, respond to differentiation cues in variable ways. In addition, cells are plastic, able to execute their specialized function while maintaining the ability to adapt to environmental changes. This is achieved through multiple mechanisms, including the direct regulation of chromatin-based processes in response to stimuli. How signal transduction pathways directly communicate with chromatin to change the epigenetic landscape is poorly understood. The preponderance of covalent modifications on histone tails coupled with a relatively small number of functional outputs raises the possibility that chromatin acts as a site of signal integration and storage.
Related JoVE Video
Emerging roles for chromatin as a signal integration and storage platform.
Nat. Rev. Mol. Cell Biol.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Cells of a multicellular organism, all containing nearly identical genetic information, respond to differentiation cues in variable ways. In addition, cells are plastic, able to execute their specialized function while maintaining the ability to adapt to environmental changes. This is achieved through multiple mechanisms, including the direct regulation of chromatin-based processes in response to stimuli. How signal transduction pathways directly communicate with chromatin to change the epigenetic landscape is poorly understood. The preponderance of covalent modifications on histone tails coupled with a relatively small number of functional outputs raises the possibility that chromatin acts as a site of signal integration and storage.
Related JoVE Video
Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF.
J. Biol. Chem.
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
In epigenetic signaling pathways, histone tails are heavily modified, resulting in the recruitment of effector molecules that can influence transcription. One such molecule, plant homeodomain finger protein 20 (PHF20), uses a Tudor domain to read dimethyl lysine residues and is a known component of the MOF (male absent on the first) histone acetyltransferase protein complex, suggesting it plays a role in the cross-talk between lysine methylation and histone acetylation. We sought to investigate the biological role of PHF20 by generating a knockout mouse. Without PHF20, mice die shortly after birth and display a wide variety of phenotypes within the skeletal and hematopoietic systems. Mechanistically, PHF20 is not required for maintaining the global H4K16 acetylation levels or locus specific histone acetylation but instead works downstream in transcriptional regulation of MOF target genes.
Related JoVE Video
Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation.
Nat. Struct. Mol. Biol.
Show Abstract
Hide Abstract
A fundamental challenge in mammalian biology has been the elucidation of mechanisms linking DNA methylation and histone post-translational modifications. Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has multiple domains that bind chromatin, and it is implicated genetically in the maintenance of DNA methylation. However, molecular mechanisms underlying DNA methylation regulation by UHRF1 are poorly defined. Here we show that UHRF1 association with methylated histone H3 Lys9 (H3K9) is required for DNA methylation maintenance. We further show that UHRF1 association with H3K9 methylation is insensitive to adjacent H3 S10 phosphorylation--a known mitotic phospho-methyl switch. Notably, we demonstrate that UHRF1 mitotic chromatin association is necessary for DNA methylation maintenance through regulation of the stability of DNA methyltransferase-1. Collectively, our results define a previously unknown link between H3K9 methylation and the faithful epigenetic inheritance of DNA methylation, establishing a notable mitotic role for UHRF1 in this process.
Related JoVE Video
PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53.
Nat. Struct. Mol. Biol.
Show Abstract
Hide Abstract
PHF20 is a multidomain protein and subunit of a lysine acetyltransferase complex that acetylates histone H4 and p53 but whose function is unclear. Using biochemical, biophysical and cellular approaches, we determined that PHF20 is a direct regulator of p53. A Tudor domain in PHF20 recognized p53 dimethylated at Lys370 or Lys382 and a homodimeric form of this Tudor domain could associate with the two dimethylated sites on p53 with enhanced affinity, indicating a multivalent interaction. Association with PHF20 promotes stabilization and activation of p53 by diminishing Mdm2-mediated p53 ubiquitylation and degradation. PHF20 contributes to upregulation of p53 in response to DNA damage, and ectopic expression of PHF20 in different cell lines leads to phenotypic changes that are hallmarks of p53 activation. Overall our work establishes that PHF20 functions as an effector of p53 methylation that stabilizes and activates p53.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.