JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, Cesium-137, using a shotgun LC-MS(E) approach.
J. Proteome Res.
PUBLISHED: 10-22-2014
Show Abstract
Hide Abstract
In this study ultra-performance liquid chromatography (UPLC) coupled with time of flight mass spectrometry in the MSE mode was used for rapid and comprehensive analysis of metabolites in the serum of mice exposed to internal exposure by Cesium-137 (137Cs). The effects of exposure to 137Cs were studied at several time-points after injection of 137CsCl in mice. Over 1800 spectral features were detected in the serum of mice in positive and negative electrospray ionization modes combined. Detailed statistical analysis revealed that several metabolites associated with amino acid metabolism, fatty acid metabolism, and the TCA cycle were significantly perturbed in the serum of 137Cs-exposed mice compared to that of control mice. While metabolites associated with the TCA cycle and glycolysis increased in their serum abundances, fatty acids such as linoleic acid and palmitic acid were detected at lower levels in serum after 137Cs exposure. Furthermore, phosphatidylcholines (PC)s were among the most perturbed ions in the serum of 137Cs-exposed mice. This is the first study on the effects of exposure by an internal emitter in serum using a UPLC/MSE approach. The results have put forth a panel of metabolites, which may serve as potential serum markers to 137Cs exposure.
Related JoVE Video
Metabolic phenotyping reveals a lipid mediator response to ionizing radiation.
J. Proteome Res.
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
Exposure to ionizing radiation has dramatically increased in modern society, raising serious health concerns. The molecular response to ionizing radiation, however, is still not completely understood. Here, we screened mouse serum for metabolic alterations following an acute exposure to ? radiation using a multiplatform mass-spectrometry-based strategy. A global, molecular profiling revealed that mouse serum undergoes a series of significant molecular alterations following radiation exposure. We identified and quantified bioactive metabolites belonging to key biochemical pathways and low-abundance, oxygenated, polyunsaturated fatty acids (PUFAs) in the two groups of animals. Exposure to ? radiation induced a significant increase in the serum levels of ether phosphatidylcholines (PCs) while decreasing the levels of diacyl PCs carrying PUFAs. In exposed mice, levels of pro-inflammatory, oxygenated metabolites of arachidonic acid increased, whereas levels of anti-inflammatory metabolites of omega-3 PUFAs decreased. Our results indicate a specific serum lipidomic biosignature that could be utilized as an indicator of radiation exposure and as novel target for therapeutic intervention. Monitoring such a molecular response to radiation exposure might have implications not only for radiation pathology but also for countermeasures and personalized medicine.
Related JoVE Video
Wip1 abrogation decreases intestinal tumor frequency in APC(Min/+) mice irrespective of radiation quality.
Radiat. Res.
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
Low-linear energy transfer (low-LET) ?-ray exposure is a risk factor for colorectal cancer (CRC). Due to their high-LET nature, energetic iron ions found in space are expected to pose greater CRC risks to astronauts undertaking long-duration space missions beyond low Earth orbit. Wild-type p53-induced phosphatase 1 (Wip1) is important for cellular DNA damage response and its abrogation has been shown to inhibit spontaneous intestinal tumorigenesis in APC(Min/+) mice, a well-studied mouse model of human CRC. However, the relationship of Wip1 to radiation-induced intestinal tumorigenesis, especially by energetic iron ions, has not been investigated in APC(Min/+) mice. We have previously reported that there is a greater intestinal tumorigenic potential of iron-ion radiation relative to (137)Cs ? rays, so the purpose of the current study was to investigate whether Wip1 abrogation could influence high-LET dependent intestinal tumorigenesis in APC(Min/+) mice. Intestinal tumor frequency and grade were assessed in APC(Min/+)/Wip1(-/-) mice and results were compared to those in APC(Min/+)/Wip1(+/+) mice after exposure to a mean absorbed dose of 2 Gy from (137)Cs ? rays or 1.6 Gy from 1 GeV/n iron ions. Cellular differentiation and proliferation were also assessed in the intestinal tumors of sham-irradiated and irradiated mice. Decreased tumor frequency and lower tumor grade were observed in APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice. Notably, a similar decrease (?6-fold in both groups) in tumor number was observed in sham-irradiated and ?-irradiated APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice. However, tumorigenesis in the energetic iron-ion exposed group was reduced ?8-fold in APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice. A significantly lower proliferation/differentiation index in tumors of iron-ion exposed APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice suggests that reduced proliferation and enhanced differentiation as a result of Wip1 abrogation maybe involved. In conclusion, the current study demonstrated that the absence of Wip1 blocked radiation-induced intestinal tumorigenesis irrespective of radiation quality and has implications for developing preventive strategies against the tumorigenic potential of radiation exposure on earth and in outer space.
Related JoVE Video
The effect of low dose rate on metabolomic response to radiation in mice.
Radiat Environ Biophys
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed ?-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment.
Related JoVE Video
Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation.
Radiat. Res.
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4-6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher's exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid ?-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker identification based on the overlap between animal models and humans.
Related JoVE Video
Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism.
ISME J
PUBLISHED: 03-14-2014
Show Abstract
Hide Abstract
Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide moiety that acts as both an attachment site and carbon source for intestinal bacteria. Non-secretors, who are homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to Crohn's disease (CD). To characterize the effect of FUT2 polymorphism on the mucosal ecosystem, we profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage samples from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 sese). Imputed metagenomic analysis revealed perturbations of energy metabolism in the microbiome of non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and vitamin metabolism and glycan biosynthesis and metabolism-related pathways, and the depletion of amino-acid biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2(-/-) genotype. Metabolomic analysis of human specimens revealed concordant as well as novel changes in the levels of several metabolites. Human metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical levels of inflammation in the local intestinal mucosa. Therefore, the colonic microbiota of non-secretors is altered at both the compositional and functional levels, affecting the host mucosal state and potentially explaining the association of FUT2 genotype and CD susceptibility.
Related JoVE Video
Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor ? protects against alcoholic liver disease.
Alcohol. Clin. Exp. Res.
PUBLISHED: 03-14-2014
Show Abstract
Hide Abstract
Chronic alcohol intake affects liver function and causes hepatic pathological changes. It has been shown that peroxisome proliferator-activated receptor ? (PPAR?)-null mice developed more pronounced hepatic changes than wild-type (WT) mice after chronic exposure to a diet containing 4% alcohol. The remarkable similarity between the histopathology of alcoholic liver disease (ALD) in Ppara-null model and in humans, and the fact that PPAR? expression and activity in human liver are less than one-tenth of those in WT mouse liver make Ppara-null a good system to investigate ALD.
Related JoVE Video
High-energy particle-induced tumorigenesis throughout the gastrointestinal tract.
Radiat. Res.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
Epidemiological data reveals the gastrointestinal (GI) tract as one of the main sites for low-LET radiation-induced cancers. Importantly, the use of particle therapy is increasing, but cancer risk by high-LET particles is still poorly understood. This gap in our knowledge also remains a major limiting factor in planning long-term space missions. Therefore, assessing risks and identifying predisposing factors for carcinogenesis induced by particle radiation is crucial for both astronauts and cancer survivors. We have previously shown that exposure to relatively high doses of high-energy (56)Fe ions induced higher intestinal tumor frequency and grade in the small intestine of Apc(Min/+) mice than ? rays. However, due to the high number of spontaneous lesions (?30) that develop in Apc(Min/+) animals, this Apc mutant model is not suitable to investigate effects of cumulative doses <1 Gy, which are relevant for risk assessment in astronauts and particle radiotherapy patients. However, Apc(1638N/+) mice develop a relatively small number of spontaneous lesions (?3 per animal) in both small intestine and colon, and thus we propose a better model for studies on radiation-induced carcinogenesis. Here, we investigated model particle radiation increases tumor frequency and grade in the entire gastrointestinal tract (stomach and more distal intestine) after high- and low-radiation doses whether in the Apc(1638N/+). We have previously reported that an increase in small intestinal tumor multiplicity after exposure to ? rays was dependent on gender in Apc(1638N/+) mice, and here we investigated responses to particle radiation in the same model. Phenotypical and histopathological observations were accompanied by late changes in number and position of mitotic cells in intestinal crypts from animals exposed to different radiation types.
Related JoVE Video
Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry.
J. Am. Soc. Mass Spectrom.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 10(6) normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.
Related JoVE Video
Long-term differential changes in mouse intestinal metabolomics after ? and heavy ion radiation exposure.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET ? radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant ? radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or ? radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy ? radiation and results were compared to an equitoxic ??Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ??Fe radiation preferentially altered dipeptide metabolism. Furthermore, ??Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and ? radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.
Related JoVE Video
Development of Urinary Biomarkers for Internal Exposure by Cesium-137 Using a Metabolomics Approach in Mice.
Radiat. Res.
PUBLISHED: 12-30-2013
Show Abstract
Hide Abstract
Cesium-137 is a fission product of uranium and plutonium in nuclear reactors and is released in large quantities during nuclear explosions or detonation of an improvised device containing this isotope. This environmentally persistent radionuclide undergoes radioactive decay with the emission of beta particles as well as gamma radiation. Exposure to (137)Cs at high doses can cause acute radiation sickness and increase risk for cancer and death. The serious health risks associated with (137)Cs exposure makes it critical to understand how it affects human metabolism and whether minimally invasive and easily accessible samples such as urine and serum can be used to triage patients in case of a nuclear disaster or a radiologic event. In this study, we have focused on establishing a time-dependent metabolomic profile for urine collected from mice injected with (137)CsCl. The samples were collected from control and exposed mice on days 2, 5, 20 and 30 after injection. The samples were then analyzed by ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC/TOFMS) and processed by an array of informatics and statistical tools. A total of 1,412 features were identified in ESI(+) and ESI(-) modes from which 200 were determined to contribute significantly to the separation of metabolomic profiles of controls from those of the different treatment time points. The results of this study highlight the ease of use of the UPLC/TOFMS platform in finding urinary biomarkers for (137)Cs exposure. Pathway analysis of the statistically significant metabolites suggests perturbations in several amino acid and fatty acid metabolism pathways. The results also indicate that (137)Cs exposure causes: similar changes in the urinary excretion levels of taurine and citrate as seen with external-beam gamma radiation; causes no attenuation in the levels of hexanoylglycine and N-acetylspermidine; and has unique effects on the levels of isovalerylglycine and tiglylglycine.
Related JoVE Video
MetaboLyzer: A Novel Statistical Workflow for Analyzing Postprocessed LC-MS Metabolomics Data.
Anal. Chem.
PUBLISHED: 11-22-2013
Show Abstract
Hide Abstract
Metabolomics, the global study of small molecules in a particular system, has in the past few years risen to become a primary -omics platform for the study of metabolic processes. With the ever-increasing pool of quantitative data yielded from metabolomic research, specialized methods and tools with which to analyze and extract meaningful conclusions from these data are becoming more and more crucial. Furthermore, the depth of knowledge and expertise required to undertake a metabolomics oriented study is a daunting obstacle to investigators new to the field. As such, we have created a new statistical analysis workflow, MetaboLyzer, which aims to both simplify analysis for investigators new to metabolomics, as well as provide experienced investigators the flexibility to conduct sophisticated analysis. MetaboLyzers workflow is specifically tailored to the unique characteristics and idiosyncrasies of postprocessed liquid chromatography-mass spectrometry (LC-MS)-based metabolomic data sets. It utilizes a wide gamut of statistical tests, procedures, and methodologies that belong to classical biostatistics, as well as several novel statistical techniques that we have developed specifically for metabolomics data. Furthermore, MetaboLyzer conducts rapid putative ion identification and putative biologically relevant analysis via incorporation of four major small molecule databases: KEGG, HMDB, Lipid Maps, and BioCyc. MetaboLyzer incorporates these aspects into a comprehensive workflow that outputs easy to understand statistically significant and potentially biologically relevant information in the form of heatmaps, volcano plots, 3D visualization plots, correlation maps, and metabolic pathway hit histograms. For demonstration purposes, a urine metabolomics data set from a previously reported radiobiology study in which samples were collected from mice exposed to ? radiation was analyzed. MetaboLyzer was able to identify 243 statistically significant ions out of a total of 1942. Numerous putative metabolites and pathways were found to be biologically significant from the putative ion identification workflow.
Related JoVE Video
Gadd45 in stress signaling, cell cycle control, and apoptosis.
Adv. Exp. Med. Biol.
PUBLISHED: 10-10-2013
Show Abstract
Hide Abstract
The first identified Gadd45 gene, Gadd45a, encodes a ubiquitously expressed protein that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. This protein and the other two members of this small gene family, Gadd45b and Gadd45g, have been implicated in a variety of the responses to cell injury including cell cycle checkpoints, apoptosis, and DNA repair. In vivo, many of the prominent roles for the Gadd45 proteins are associated with signaling mediated by p38 mitogen-activated protein kinases (MAPK). Gadd45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction. In vivo, there are important tissue and cell-type-specific differences in the roles for Gadd45 in MAPK signaling. In addition to being p53-regulated, Gadd45a has been found to contribute to p53 activation via p38. Like other stress and signaling proteins, Gadd45 proteins show complex regulation and numerous effectors.
Related JoVE Video
t4 Workshop Report: Pathways of Toxicity.
ALTEX
PUBLISHED: 09-26-2013
Show Abstract
Hide Abstract
Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key aspect of this transformation - the development of Pathways of Toxicity as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a Pathway of Toxicity (PoT), as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA). The workshop came up with a preliminary definition of PoT as "A molecular definition of cellular processes shown to mediate adverse outcomes of toxicants". It is further recognized that normal physiological pathways exist that maintain homeostasis and these, sufficiently perturbed, can become PoT. Second, the workshop sought to define the adequate public and commercial resources for PoT information, including data, visualization, analyses, tools, and use-cases, as well as the kinds of efforts that will be necessary to enable the creation of such a resource. Third, the workshop explored ways in which systems biology approaches could inform pathway annotation, and which resources are needed and available that can provide relevant PoT information to the diverse user communities.
Related JoVE Video
Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production.
Aging (Albany NY)
PUBLISHED: 08-10-2013
Show Abstract
Hide Abstract
Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a ? radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion 56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than ? radiation.
Related JoVE Video
Differential mobility spectrometry with nanospray ion source as a compact detector for small organics and inorganics.
Int J Ion Mobil Spectrom
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
Electrospray ionization (ESI) is an important tool in chemical and biochemical survey and targeted analysis in many applications. For chemical detection and identification electrospray is usually used with mass spectrometry (MS). However, for screening and monitoring of chemicals of interest in light, low power field-deployable instrumentation, an alternative detection technology with chemical selectivity would be highly useful, especially since small, lightweight, chip-based gas and liquid chromatographic technologies are being developed. Our initial list of applications requiring portable instruments includes chemical surveys on Mars, medical diagnostics based on metabolites in biological samples, and water quality analysis. In this report, we evaluate ESI-Differential Mobility Spectrometry (DMS) as a compact, low-power alternative to MS detection. Use of DMS for chemically-selective detection of ESI suffers in comparison with mass spectrometry because portable MS peak capacity is greater than that of DMS by 10X or more, but the development of light, fast chip chromatography offers compensating resolution. Standalone DMS provides the chemical selectivity familiar from DMS-MS publications, and exploits the sensitivity of ion detection. We find that sub-microliter-per-minute flows and a correctly-designed interface prepare a desolvated ion stream that enables DMS to act as an effective ion filter. Results for a several small organic biomarkers and metabolites, including citric acid, azelaic acid, n-hexanoylglycine, thymidine, and caffeine, as well as compounds such as dinitrotoluene and others, have been characterized and demonstrate selective detection. Water-quality-related halogen-containing anions, fluoride through bromate, contained in liquid samples are also isolated by DMS. A reaction-chamber interface is highlighted as most practical for portable ESI-DMS instrumentation.
Related JoVE Video
Identifying radiation exposure biomarkers from mouse blood transcriptome.
Int J Bioinform Res Appl
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Ionising radiation is a pleiotropic stress agent that may induce a variety of adverse effects. Molecular biomarker approaches possess promise to assess radiation exposure, however, the pleiotropic nature of ionising radiation induced transcriptional responses and the historically poor inter-laboratory performance of omics-derived biomarkers serve as barriers to identification of unequivocal biomarker sets. Here, we present a whole-genome survey of the murine transcriptomic response to physiologically relevant radiation doses, 2 Gy and 8 Gy. We used this dataset with the Random Forest algorithm to correctly classify independently generated data and to identify putative metabolite biomarkers for radiation exposure.
Related JoVE Video
Identification of serum insulin-like growth factor binding protein 1 as diagnostic biomarker for early-stage alcohol-induced liver disease.
J Transl Med
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
Alcohol consumption is a major cause of liver disease in humans. The use and monitoring of biomarkers associated with early, pre-clinical stages of alcohol-induced liver disease (pre-ALD) could facilitate diagnosis and treatment, leading to improved outcomes.
Related JoVE Video
PPAR?/? modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity.
Toxicology
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-?/? (PPAR?/?) has been shown to inhibit steatosis, the present study examined the role of PPAR?/? in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Ppar?/?-null mice were fed either a control or 4% ethanol diet and examined after 4-7 months of treatment. Ethanol fed Ppar?/?-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Ppar?/?-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPAR?/? in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Ppar?/?-null mice. Evidence suggests that PPAR?/? modulates pyridoxal kinase activity by altering Km, consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPAR?/? prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity.
Related JoVE Video
Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival.
Food Chem. Toxicol.
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body ?-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels.
Related JoVE Video
Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater ?-catenin activation than ? radiation in APC(Min/+) mice.
PLoS ONE
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as ?-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APC(Min/+) mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion (56)Fe radiation (energy: 1000 MeV/nucleon) and results were compared to ? radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy (56)Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy ? and equitoxic 1.6 Gy (56)Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and ?-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and ?-ray, intestinal tumor frequency and grade was significantly higher after (56)Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after (56)Fe radiation relative to ? radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in (56)Fe than ? irradiated samples. Activation of ?-catenin was more in (56)Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to ? radiation exposure to (56)Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of ?-catenin and its downstream effectors.
Related JoVE Video
Off-target response of a Wip1 chemical inhibitor in skin keratinocytes.
J. Dermatol. Sci.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
The wild type p53 inducible phosphatase (Wip1) plays an important role in modulating not only stress responses by various environmental stresses, but when overexpressed it also impairs the intrinsic tumor surveillance networks that are frequently found in a number of cancers including skin cancers. As a result, using a pharmacological inhibitor of Wip1 has been suggested to be a novel chemotherapeutic approach to recover the innate tumor surveillance in a variety of cancers.
Related JoVE Video
Accelerated hematopoietic toxicity by high energy (56)Fe radiation.
Int. J. Radiat. Biol.
PUBLISHED: 12-12-2011
Show Abstract
Hide Abstract
There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to ? or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater.
Related JoVE Video
Comparison of mouse urinary metabolic profiles after exposure to the inflammatory stressors ? radiation and lipopolysaccharide.
Radiat. Res.
PUBLISHED: 11-30-2011
Show Abstract
Hide Abstract
Metabolomics on easily accessible biofluids has the potential to provide rapid identification and distinction between stressors and inflammatory states. In the event of a radiological event, individuals with underlying medical conditions could present with similar symptoms to radiation poisoning, prominently nausea, diarrhea, vomiting and fever. Metabolomics of radiation exposure in mice has provided valuable biomarkers, and in this study we aimed to identify biomarkers of lipopolysaccharide (LPS) exposure to compare and contrast with ionizing radiation. LPS treatment leads to a severe inflammatory response and a cytokine storm, events similar to radiation exposure, and LPS exposure can recapitulate many of the responses seen in sepsis. Urine from control mice, LPS-treated mice, and mice irradiated with 3, 8 and 15 Gy of ? rays was analyzed by LCMS, and markers were extracted using SIMCA-P(+) and Random Forests. Markers were validated through tandem mass spectrometry against pure chemicals. Five metabolites, cytosine, cortisol, adenine, O-propanoylcarnitine and isethionic acid, showed increased excretion at 24 h after LPS treatment (P < 0.0001, 0.0393, 0.0393, <0.0001 and 0.0004, respectively). Of these, cytosine, adenine and O-propanoylcarnitine showed specificity to LPS treatment when compared to radiation. On the other hand, increased excretion of cortisol after LPS and radiation treatments indicated a rapid systemic response to inflammatory agents. Isethionic acid excretion, however, showed elevated levels not only after LPS treatment but also after a very high dose of radiation (15 Gy), while additional metabolites showed responsiveness to radiation but not LPS. Metabolomics therefore has the potential to distinguish between different inflammatory responses based on differential ion signatures. It can also provide quick and reliable assessment of medical conditions in a mass casualty radiological scenario and aid in effective triaging.
Related JoVE Video
UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model.
J. Proteome Res.
PUBLISHED: 07-28-2011
Show Abstract
Hide Abstract
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-?-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Related JoVE Video
Radiation metabolomics and its potential in biodosimetry.
Int. J. Radiat. Biol.
PUBLISHED: 06-22-2011
Show Abstract
Hide Abstract
Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. This review provides an overview of radiation signalling and metabolism, of metabolomic approaches used in the discovery phase, and of instrumentation with the potential to assess radiation injury in the field.
Related JoVE Video
p16Ink4a suppression of lung adenocarcinoma by Bmi-1 in the presence of p38 activation.
J Thorac Oncol
PUBLISHED: 06-22-2011
Show Abstract
Hide Abstract
Because evasion of tumor suppression is a critical step in cancer development, cancer cells have developed a variety of mechanisms to circumvent the influence of tumor suppressive pathways. Thus, genes that negatively regulate tumor suppressors could be considered novel types of oncogenes such as Bmi-1 repressing p16Ink4a and inhibiting p53 and were found to be frequently up-regulated in a variety of cancers. p38 mitogen-activated protein kinase (MAPK), which reportedly plays a crucial role as a tumor suppressor, is activated in number of lung adenocarcinomas, which is seemingly at odds with its role as a tumor suppressor.
Related JoVE Video
Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome.
J Biomol Tech
PUBLISHED: 04-02-2011
Show Abstract
Hide Abstract
Metabolomics is the comprehensive assessment of endogenous metabolites of a biological system. "Oncometabolomics" is a rapidly emerging field with potential for developing specific biomarkers for early detection, diagnosis, and disease prognosis. Given the power of this technology, the availability of standardized sample preparation methods for immortalized human cancer cell lines is critical toward augmenting research in this direction. Using MCF-7 cells as a model system, we describe an approach for intracellular metabolite extraction from cell cultures for reproducible and comprehensive metabolite extraction. The samples, when injected onto a reverse-phase 50 × 2.1 mm Acquity 1.7-?m C18 column, using an ultra performance liquid chromatography system (UPLC) coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (ESI-Q-TOF-MS) in positive and negative modes, yielded a data matrix with a total of 2600 features. This method, when compared with a water-extraction procedure described earlier, was found to yield significantly higher coverage and detection of molecular features. Finally, we successfully tested the performance of this method for an array of human cancer cell lines used widely in the cancer research field.
Related JoVE Video
Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress.
Cancer Res.
PUBLISHED: 11-23-2010
Show Abstract
Hide Abstract
Gadd45a plays a pivotal role as a stress sensor that modulates cellular responses to various stress stimuli including oncogenic stress. We reported that the stress sensor Gadd45a gene functions as a tumor suppressor in Ras-driven breast tumorigenesis via increasing JNK-mediated apoptosis and p38-mediated senescence. In contrast, here, we show that Gadd45a promotes Myc-driven breast cancer by negatively regulating MMP10 via GSK3 ?/?-catenin signaling, resulting in increased tumor vascularization and growth. These novel findings indicate that Gadd45a functions as either tumor promoter or suppressor, is dependent on the oncogenic stress, and is mediated via distinct signaling pathways. Collectively, these novel findings highlight the significance of the type of oncogenic alteration on how stress response genes function during initiation and progression of tumorigenesis. Because Gadd45a is a target for BRCA1 and p53, these findings have implications regarding BRCA1/p53 tumor suppressor functions.
Related JoVE Video
Zap70 functions to maintain stemness of mouse embryonic stem cells by negatively regulating Jak1/Stat3/c-Myc signaling.
Stem Cells
PUBLISHED: 07-20-2010
Show Abstract
Hide Abstract
Zeta-chain-associated protein kinase-70 (Zap70), a Syk family tyrosine kinase, has been reported to be present exclusively in normal T-cells, natural killer cells, and B cells, serving as a pivotal regulator of antigen-mediated receptor signaling and development. In this study, we report that Zap70 is expressed in undifferentiated mouse embryonic stem cells (mESCs) and may critically regulate self-renewal and pluripotency in mESCs. We found that Zap70 knocked-down mESCs (Zap70KD) show sustained self-renewal and defective differentiation. In addition, we present evidence that the sustained self-renewal in Zap70KD is associated with enhanced Jak/Stat3 signaling and c-Myc induction. These altered signaling appears to result from upregulated leukemia inhibitory factor receptor and downregulated src homology region 2 domain containing phosphatase 1 (SHP-1) phosphatase activity. On the basis of these results, we propose that in undifferentiated mESCs, Zap70 plays important roles in modulating the balance between self-renewal capacity and pluripotent differentiation ability as a key regulator of the Jak/Stat3/c-Myc signaling pathway.
Related JoVE Video
Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and the Ppara-null mouse.
J. Proteome Res.
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Alcohol-induced liver disease (ALD) is a leading cause of nonaccident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively nonspecific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study, the metabolic changes associated with ALD were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-beta-d-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of a metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model.
Related JoVE Video
Voluntary exploratory data submissions to the US FDA and the EMA: experience and impact.
Nat Rev Drug Discov
PUBLISHED: 06-02-2010
Show Abstract
Hide Abstract
Heterogeneity in the underlying mechanisms of disease processes and inter-patient variability in drug responses are major challenges in drug development. To address these challenges, biomarker strategies based on a range of platforms, such as microarray gene-expression technologies, are increasingly being applied to elucidate these sources of variability and thereby potentially increase drug development success rates. With the aim of enhancing understanding of the regulatory significance of such biomarker data by regulators and sponsors, the US Food and Drug Administration initiated a programme in 2004 to allow sponsors to submit exploratory genomic data voluntarily, without immediate regulatory impact. In this article, a selection of case studies from the first 5 years of this programme - which is now known as the voluntary exploratory data submission programme, and also involves collaboration with the European Medicines Agency - are discussed, and general lessons are highlighted.
Related JoVE Video
Wip1-expressing feeder cells retain pluripotency of co-cultured mouse embryonic stem cells under leukemia inhibitory factor-deprivated condition.
Arch. Pharm. Res.
PUBLISHED: 05-25-2010
Show Abstract
Hide Abstract
The optimization of in vitro culture conditions for embryonic stem cells (ESCs) is a matter of critical importance; a prompt supply of a sufficient population of cells that retain their pluripotency capabilities must be secured in order to make possible future cell therapies. Despite a number of reports asserting that a variety of cytokines, signaling ligands, and small molecules can help in maintaining the pluripotency of ESCs, mammalian feeder cells continue to be broadly accepted as the method of choice for ESC cultures. This appears to be because mammalian feeder cells seem to produce some as-yet-unidentified factor that makes them very effective as feeder cells. In this study, we investigated wild-type p53 inducible phosphatase (Wip1), the knockdown of which increases Wnt inhibitory factor-1 expression, in its feeder functions toward mouse embryonic stem cells, lowering the effect of Wnt, one of key signaling in maintaining stemness of ESCs. For this purpose, Wip1 was stably expressed in mouse embryonic fibroblast cell line (STO) using retro-viral gene delivery system and then the function as a feeder cell was monitored either with or without leukemia inhibitory factor (LIF) in culture medium. We demonstrated that mouse embryonic stem cells grown with Wip1 expressing STO showed higher alkaline phosphatase activity and sustained Oct-4 expression level even under LIF deprivation condition compared to both control and Wip1 phosphatase activity dead mutant expressing STO. These results imply that Wip1 phosphatase activity in feeder cells is important to retain pluripotency of mouse embryonic stem cells under LIF deprivation conditions. These results indicate that genetically engineered feeder cells such as Wip1 expressing cell lines, are alternative strategy for the optimization of maintenance and expansion of mouse embryonic stem cells.
Related JoVE Video
Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response.
Cancer Res.
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
The integrity of DNA is constantly challenged throughout the life of a cell by both endogenous and exogenous stresses. A well-organized rapid damage response and proficient DNA repair, therefore, become critically important for maintaining genomic stability and cell survival. When DNA is damaged, the DNA damage response (DDR) can be initiated by alterations in chromosomal structure and histone modifications, such as the phosphorylation of the histone H2AX (the phosphorylated form is referred to as gamma-H2AX). gamma-H2AX plays a crucial role in recruiting DDR factors to damage sites for accurate DNA repair. On repair completion, gamma-H2AX must then be reverted to H2AX by dephosphorylation for attenuation of the DDR. Here, we report that the wild-type p53-induced phosphatase 1 (Wip1) phosphatase, which is often overexpressed in a variety of tumors, effectively dephosphorylates gamma-H2AX in vitro and in vivo. Ectopic expression of Wip1 significantly reduces the level of gamma-H2AX after ionizing as well as UV radiation. Forced premature dephosphorylation of gamma-H2AX by Wip1 disrupts recruitment of important DNA repair factors to damaged sites and delays DNA damage repair. Additionally, deletion of Wip1 enhances gamma-H2AX levels in cells undergoing constitutive oncogenic stress. Taken together, our studies show that Wip1 is an important mammalian phosphatase for gamma-H2AX and shows an additional mechanism for Wip1 in the tumor surveillance network.
Related JoVE Video
Enhanced intestinal tumor multiplicity and grade in vivo after HZE exposure: mouse models for space radiation risk estimates.
Radiat Environ Biophys
PUBLISHED: 05-02-2010
Show Abstract
Hide Abstract
Carcinogenesis induced by space radiation is considered a major risk factor in manned interplanetary and other extended missions. The models presently used to estimate the risk for cancer induction following deep space radiation exposure are based on data from A-bomb survivor cohorts and do not account for important biological differences existing between high-linear energy transfer (LET) and low-LET-induced DNA damage. High-energy and charge (HZE) radiation, the main component of galactic cosmic rays (GCR), causes highly complex DNA damage compared to low-LET radiation, which may lead to increased frequency of chromosomal rearrangements, and contribute to carcinogenic risk in astronauts. Gastrointestinal (GI) tumors are frequent in the United States, and colorectal cancer (CRC) is the third most common cancer accounting for 10% of all cancer deaths. On the basis of the aforementioned epidemiological observations and the frequency of spontaneous precancerous GI lesions in the general population, even a modest increase in incidence by space radiation exposure could have a significant effect on health risk estimates for future manned space flights. Ground-based research is necessary to reduce the uncertainties associated with projected cancer risk estimates and to gain insights into molecular mechanisms involved in space-induced carcinogenesis. We investigated in vivo differential effects of gamma-rays and HZE ions on intestinal tumorigenesis using two different murine models, ApcMin/+ and Apc1638N/+. We showed that gamma- and/or HZE exposure significantly enhances development and progression of intestinal tumors in a mutant-line-specific manner, and identified suitable models for in vivo studies of space radiation-induced intestinal tumorigenesis.
Related JoVE Video
Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS).
Int J Mass Spectrom
PUBLISHED: 03-23-2010
Show Abstract
Hide Abstract
Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry - mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also suppress chemical noise created in typical atmospheric-pressure ionization sources (ESI, MALDI, and others). Differential-mobility-based ion selection is based on the field dependence of ion mobility, which, in turn, depends on ion characteristics that include conformation, charge distribution, molecular polarizability, and other properties, and on the transport gas composition which can be modified to enhance resolution. DMS-MS is able to resolve small-molecule biomarkers from nearly-isobaric interferences, and suppresses chemical noise generated in the ion source and in the mass spectrometer, improving selectivity and quantitative accuracy. Our planar DMS design is rapid, operating in a few milliseconds, and analyzes ions before fragmentation. Depending on MS inlet conditions, DMS-selected ions can be dissociated in the MS inlet expansion, before mass analysis, providing a capability similar to MS/MS with simpler instrumentation. This report presents selected DMS-MS experimental results, including resolution of complex test mixtures of isobaric compounds, separation of charge states, separation of isobaric biomarkers (citrate and isocitrate), and separation of nearly-isobaric biomarker anions in direct analysis of a bio-fluid sample from the radiation-treated group of a mouse-model study. These uses of DMS combined with moderate resolution MS instrumentation indicate the feasibility of field-deployable instrumentation for biomarker evaluation.
Related JoVE Video
New and emerging technologies for genetic toxicity testing.
Environ. Mol. Mutagen.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans.
Related JoVE Video
Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study.
PLoS ONE
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting.
Related JoVE Video
Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase.
J. Biol. Chem.
PUBLISHED: 12-10-2009
Show Abstract
Hide Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors plays a key role in inflammation and augments the initiation, promotion, and progression of cancer. NF-kappaB activation generally leads to transcriptional enhancement of genes important in cell survival and cell growth, which is exploited in cancer cells. In this study, we identify an additional oncogene, PPM1D, which encodes for Wip1, as a transcriptional target of NF-kappaB in breast cancer cells. Inhibition of NF-kappaB or activation of NF-kappaB resulted in decreased or increased Wip1 expression, respectively, at both the mRNA and protein levels. PPM1D promoter activity was positively regulated by NF-kappaB, and this regulation was dependent on the presence of the conserved kappaB site in the PPM1D promoter region. Chromatin immunoprecipitation analysis showed basal binding of the p65 NF-kappaB subunit to the PPM1D promoter region encompassing the kappaB site, which is enhanced after NF-kappaB activation by tumor necrosis factor-alpha. Finally, we show that Wip1 expression is induced in lipopolysaccharide-stimulated mouse splenic B-cells and is required for maximum proliferation. Taken together, these data suggest an additional mechanism by which NF-kappaB may promote tumorigenesis, support the selective use of NF-kappaB inhibitors as chemotherapeutic agents for the treatment of human cancers, and further define a function for Wip1 in inflammation.
Related JoVE Video
Radiation metabolomics. 2. Dose- and time-dependent urinary excretion of deaminated purines and pyrimidines after sublethal gamma-radiation exposure in mice.
Radiat. Res.
PUBLISHED: 07-08-2009
Show Abstract
Hide Abstract
Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2-deoxyuridine, 2-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2-deoxyuridine and 2-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2-deoxycytidine and 2-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.
Related JoVE Video
Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways.
Stem Cells
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as "premature senescence") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.
Related JoVE Video
Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms.
Toxicol. Sci.
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.
Related JoVE Video
AMP-activated protein kinase promotes human prostate cancer cell growth and survival.
Mol. Cancer Ther.
PUBLISHED: 04-18-2009
Show Abstract
Hide Abstract
The molecular mechanisms underlying the development and progression of prostate cancer are poorly understood. AMP-activated protein kinase (AMPK) is a serine-threonine kinase that is activated in response to the hypoxic conditions found in human prostate cancers. In response to energy depletion, AMPK activation promotes metabolic changes to maintain cell proliferation and survival. Here, we report prevalent activation of AMPK in human prostate cancers and provide evidence that inhibition or depletion of AMPK leads to decreased cell proliferation and increased cell death. AMPK was highly activated in 40% of human prostate cancer specimens examined. Endogenous AMPK was active in both the androgen-sensitive LNCaP cells and the androgen-independent CWR22Rv1 human prostate cancer cells. Depletion of AMPK catalytic subunits by small interfering RNA or inhibition of AMPK activity with a small-molecule AMPK inhibitor (compound C) suppresses human prostate cancer cell proliferation. Apoptotic cell death was induced in LNCaP and CWR22Rv1 cells at compound C concentrations that inhibited AMPK activity. The evidence provided here is the first report that the activated AMPK pathway is involved in the growth and survival of human prostate cancer and offers novel potential targets for chemoprevention of human prostate cancer.
Related JoVE Video
Exposure to ionizing radiation induced persistent gene expression changes in mouse mammary gland.
Radiat Oncol
Show Abstract
Hide Abstract
Breast tissue is among the most sensitive tissues to the carcinogenic actions of ionizing radiation and epidemiological studies have linked radiation exposure to breast cancer. Currently, molecular understanding of radiation carcinogenesis in mammary gland is hindered due to the scarcity of in vivo long-term follow up data. We undertook this study to delineate radiation-induced persistent alterations in gene expression in mouse mammary glands 2-month after radiation exposure.
Related JoVE Video
Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine.
PLoS ONE
Show Abstract
Hide Abstract
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of ?-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of ? radiation were compared to (56)Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since its one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET (56)Fe radiation compared to unirradiated controls and ? radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in (56)Fe-irradiated mice. Compared to ? radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after (56)Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.
Related JoVE Video
Radioprotective effects of ON 01210.Na upon oral administration.
J. Radiat. Res.
Show Abstract
Hide Abstract
ON 01210.Na (Ex-RAD), a chlorobenzylsulfone derivative was investigated for its pharmacologic and radioprotective properties when administered via oral and subcutaneous (SC) routes. The goals of the study were to assess the comparative bioavailability of ON 01210.Na when administered by oral versus SC routes and to demonstrate that the oral drug delivery of ON 01210.Na afforded survival advantage similar to SC dosing. Pharmacokinetics was studied after two doses, 24 h apart, of ON 01210.Na (500 mg/kg) administered to male C3H/Hen mice (7-9 weeks) via SC injection or oral route. The dose response (100 to 750 mg/kg) and survival advantage of ON 01210.Na administered at 24 h and 15 min prior to 7.5 or 8 Gy whole body irradiation from a ¹³?Cs source (dose rate 1 Gy/min) were studied in these mice. Effects on the hematopoietic system were investigated by complete blood count and granulocyte-macrophage colony forming unit assay. A significant survival advantage and hematopoietic protection were observed after prophylactic oral ON 01210.Na and results were comparable to SC administration. These findings correlated well with pharmacokinetic data. Both SC and oral ON 01210.Na showed significant survival advantage against radiation toxicity and ON 01210.Na mediated hematopoietic protection plays key role in enhanced survival of mice. Oral administration holds better clinical promise as an effective countermeasure not only for early-responders in a nuclear accident, but also for the at-risk civilian population.
Related JoVE Video
Relative biological effectiveness of 12C and 28Si radiation in C57BL/6J mice.
Radiat Environ Biophys
Show Abstract
Hide Abstract
Study of heavy ion radiation-induced effects on mice could provide insight into the human health risks of space radiation exposure. The purpose of the present study is to assess the relative biological effectiveness (RBE) of (12)C and (28)Si ion radiation, which has not been reported previously in the literature. Female C57BL/6J mice (n = 15) were irradiated using 4-8 Gy of (28)Si (300 MeV/nucleon energy; LET 70 keV/?m) and 5-8 Gy of (12)C (290 MeV/nucleon energy; LET 13 keV/?m) ions. Post-exposure, mice were monitored regularly, and their survival observed for 30 days. The LD(50/30) dose (the dose at which 50 % lethality occurred by 30-day post-exposure) was calculated from the survival curve and was used to determine the RBE of (28)Si and (12)C in relation to ? radiation. The LD(50/30) for (28)Si and (12)C ion is 5.17 and 7.34 Gy, respectively, and the RBE in relation to ? radiation (LD(50/30)-7.25 Gy) is 1.4 for (28)Si and 0.99 for (12)C. Determination of RBE of (28)Si and (12)C for survival in mice is not only important for space radiation risk estimate studies, but it also has implications for HZE radiation in cancer therapy.
Related JoVE Video
Sex-dependent differences in intestinal tumorigenesis induced in Apc1638N/+ mice by exposure to ? rays.
Int. J. Radiat. Oncol. Biol. Phys.
Show Abstract
Hide Abstract
The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model.
Related JoVE Video
Exposure to ionizing radiation causes long-term increase in serum estradiol and activation of PI3K-Akt signaling pathway in mouse mammary gland.
Int. J. Radiat. Oncol. Biol. Phys.
Show Abstract
Hide Abstract
Exposure to ionizing radiation is an established risk factor for breast cancer. Radiation exposure during infancy, childhood, and adolescence confers the highest risk. Although radiation is a proven mammary carcinogen, it remains unclear where it acts in the complex multistage process of breast cancer development. In this study, we investigated the long-term pathophysiologic effects of ionizing radiation at a dose (2 Gy) relevant to fractionated radiotherapy.
Related JoVE Video
Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response.
Radiat Oncol
Show Abstract
Hide Abstract
Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.