JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Analysis of two-component systems in group B Streptococcus shows that RgfAC and the novel FspSR modulate virulence and bacterial fitness.
MBio
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence.
Related JoVE Video
Neisseria adhesin A variation and revised nomenclature scheme.
Clin. Vaccine Immunol.
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/.
Related JoVE Video
Diversity of Greek meningococcal serogroup B isolates and estimated coverage of the 4CMenB meningococcal vaccine.
BMC Microbiol.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Serogroup B meningococcal (MenB) isolates currently account for approximately 90% of invasive meningococcal disease (IMD) in Greece with ST-162 clonal complex predominating. The potential of a multicomponent meningococcal B vaccine (4CMenB) recently licensed in Europe was investigated in order to find whether the aforementioned vaccine will cover the MenB strains circulating in Greece. A panel of 148 serogroup B invasive meningococcal strains was characterized by multilocus sequence typing (MLST) and PorA subtyping. Vaccine components were typed by sequencing for factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA) and Neisseria adhesin A (NadA). Their expression was explored by Meningococcal Antigen Typing System (MATS).
Related JoVE Video
Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
One of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages. A correlation between the population structure and the presence of selected surface-associated proteins and lipooligosaccharide structure, known to contribute to virulence, was found. This high-resolution, genome-based population structure of NTHi provides the foundation to obtain a better understanding, of NTHi adaptation to the host as well as its commensal and virulence behavior, that could facilitate intervention strategies against disease caused by this important human pathogen.
Related JoVE Video
Variability of genes encoding surface proteins used as vaccine antigens in meningococcal endemic and epidemic strain panels from Norway.
Vaccine
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Surface-expressed protein antigens such as factor H-binding protein (fHbp), Neisserial adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and Porin protein A (PorA); all express sequence variability that can affect their function as protective immunogens when used in meningococcal serogroup B vaccines like the recently-approved 4CMenB (Bexsero(®)). We assessed the sequence variation of genes coding for these proteins and two additional proteins ("fusion partners" to fHbp and NHBA) in pathogenic isolates from a recent low incidence period (endemic situation; 2005-2006) in Norway. Findings among strains from this panel were contrasted to what was found among isolates from a historic outbreak (epidemic situation; 1985-1990). Multilocus sequence typing revealed 14 clonal complexes (cc) among the 66 endemic strains, while cc32 vastly predominated in the 38-strain epidemic panel. Serogroup B isolates accounted for 50/66 among endemic strains and 28/38 among epidemic strains. Potential strain-coverage ("sequence match") for the 4CMenB vaccine was identified among the majority (>70%) of the endemic serogroup B isolates and all of the epidemic serogroup B isolates evaluated. Further information about the degree of expression, surface availability and the true cross-reactivity for the vaccine antigens will be needed to fully characterize the clinical strain-coverage of 4CMenB in various geographic and epidemiological situations.
Related JoVE Video
Conservation of meningococcal antigens in the genus Neisseria.
MBio
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Neisseria meningitidis, one of the major causes of bacterial meningitis and sepsis, is a member of the genus Neisseria, which includes species that colonize the mucosae of many animals. Three meningococcal proteins, factor H-binding protein (fHbp), neisserial heparin-binding antigen (NHBA), and N. meningitidis adhesin A (NadA), have been described as antigens protective against N. meningitidis of serogroup B, and they have been employed as vaccine components in preclinical and clinical studies. In the vaccine formulation, fHbp and NHBA were fused to the GNA2091 and GNA1030 proteins, respectively, to enhance protein stability and immunogenicity. To determine the possible impact of vaccination on commensal neisseriae, we determined the presence, distribution, and conservation of these antigens in the available genome sequences of the genus Neisseria, finding that fHbp, NHBA, and NadA were conserved only in species colonizing humans, while GNA1030 and GNA2091 were conserved in many human and nonhuman neisseriae. Sequence analysis showed that homologous recombination contributed to shape the evolution and distribution of both NHBA and fHbp, three major variants of which have been defined. fHbp variant 3 was probably the ancestral form of meningococcal fHbp, while fHbp variant 1 from N. cinerea was introduced into N. meningitidis by a recombination event. fHbp variant 2 was the result of a recombination event inserting a stretch of 483 bp from variant 1 into the variant 3 background. These data indicate that a high rate of exchange of genetic material between neisseriae that colonize the human upper respiratory tract exists. IMPORTANCE The upper respiratory tract of healthy individuals is a complex ecosystem colonized by many bacterial species. Among these, there are representatives of the genus Neisseria, including Neisseria meningitidis, a major cause of bacterial meningitis and sepsis. Given the close relationship between commensal and pathogenic species, a protein-based vaccine against N. meningitidis has the potential to impact the other commensal species of Neisseria. For this reason, we have studied the distribution and evolutionary history of the antigen components of a recombinant vaccine, 4CMenB, that recently received approval in Europe under the commercial name of Bexsero®. We found that fHbp, NHBA, and NadA can be found in some of the human commensal species and that the evolution of these antigens has been essentially shaped by the high rate of genetic exchange that occurs between strains of neisseriae that cocolonize the same environment.
Related JoVE Video
The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect.
Vaccine
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
MF59 is a safe and effective vaccine adjuvant that has been used in a licensed seasonal influenza vaccine for 15 years. The purpose of the present studies was to directly address a question that has been asked of us on many occasions: "which is the adjuvant active component of MF59?". Since we have recently gained a number of insights on how MF59 works as an adjuvant, we were able to use these approaches to evaluate if the individual components of MF59 (squalene oil, the surfactants Span 85 and Tween 80 or the citrate buffer) showed any direct immunostimulatory activity. We assessed the ability of the individual components to stimulate the innate and adaptive immune responses that we have shown to be indicative of MF59-mediated adjuvanticity. No immune stimulatory capacities could be attributed to squalene, Tween 80 or the citrate buffer alone. Instead, we found that the lipophilic surfactant Span 85 contributes to activation of the muscle transcriptome. However, despite this local activation, Span 85 alone - like the other single components of MF59 - is not sufficient to induce an adjuvant effect. Only the fully formulated MF59 emulsion induces all the established hallmarks of innate and adaptive immune activation, which includes activation of genes indicative of transendothelial cell migration, strong influx of immune cells into the injection site and their enhanced antigen uptake and transport to the lymph nodes. These observations may have important implications in the design of optimal emulsion-based vaccine adjuvants.
Related JoVE Video
Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.
Lancet Infect Dis
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe.
Related JoVE Video
An analysis of the sequence variability of meningococcal fHbp, NadA and NHBA over a 50-year period in the Netherlands.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Studies of meningococcal evolution and genetic population structure, including the long-term stability of non-random associations between variants of surface proteins, are essential for vaccine development. We analyzed the sequence variability of factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisseria adhesin A (NadA), three major antigens in the multicomponent meningococcal serogroup B vaccine 4CMenB. A panel of invasive isolates collected in the Netherlands over a period of 50 years was used. To our knowledge, this strain collection covers the longest time period of any collection available worldwide. Long-term persistence of several antigen sub/variants and of non-overlapping antigen sub/variant combinations was observed. Our data suggest that certain antigen sub/variants including those used in 4CMenB are conserved over time and promoted by selection.
Related JoVE Video
Sequence analysis of 96 genomic regions identifies distinct evolutionary lineages within CC156, the largest Streptococcus pneumoniae clonal complex in the MLST database.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S. pneumoniae strains has led to the identification of a large number of new Sequence Types (STs) causing the merger of formerly distinct lineages into larger CCs. An example of this is the CC156, displaying a high level of complexity and including strains with allelic profiles differing in all seven of the MLST loci, capsular type and the presence of the Pilus Islet-1 (PI-1). Detailed analysis of the CC156 indicates that the identification of new STs, such as ST4945, induced the merging of formerly distinct clonal complexes. In order to discriminate the strain diversity within CC156, a recently developed typing schema, 96-MLST, was used to analyse 66 strains representative of 41 different STs. Analysis of allelic profiles by hierarchical clustering and a minimum spanning tree identified ten genetically distinct evolutionary lineages. Similar results were obtained by phylogenetic analysis on the concatenated sequences with different methods. The identified lineages are homogenous in capsular type and PI-1 presence. ST4945 strains were unequivocally assigned to one of the lineages. In conclusion, the identification of new STs through an exhaustive analysis of pneumococcal strains from various laboratories has highlighted that potentially unrelated subgroups can be grouped into a single CC by eBURST. The analysis of additional loci, such as those included in the 96-MLST schema, will be necessary to accurately discriminate the clonal evolution of the pneumococcal population.
Related JoVE Video
Adaptive response of Group B streptococcus to high glucose conditions: new insights on the CovRS regulation network.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Although the contribution of carbohydrate catabolism to bacterial colonization and infection is well recognized, the transcriptional changes during these processes are still unknown. In this study, we have performed comparative global gene expression analysis of GBS in sugar-free versus high glucose milieu. The analysis revealed a differential expression of genes involved in metabolism, transport and host-pathogen interaction. Many of them appeared to be among the genes previously reported to be controlled by the CovRS two-component system. Indeed, the transcription profile of a ?covRS strain grown in high-glucose conditions was profoundly affected. In particular, of the total genes described to be regulated by glucose, ?27% were under CovRS control with a functional role in protein synthesis, transport, energy metabolism and regulation. Among the CovRS dependent genes, we found bibA, a recently characterized adhesin involved in bacterial serum resistance and here reported to be down-regulated by glucose. ChIP analysis revealed that in the presence of glucose, CovR binds bibA promoter in vivo, suggesting that CovR may act as a negative regulator or a repressor. We also demonstrated that, as for other target promoters, chemical phosphorylation of CovR in aspartic acid increases its affinity for the bibA promoter region. The data reported in this study contribute to the understanding of the molecular mechanisms modulating the adaptation of GBS to glucose.
Related JoVE Video
Population genetics and evolution of the pan-genome of Streptococcus pneumoniae.
Int. J. Med. Microbiol.
PUBLISHED: 10-13-2011
Show Abstract
Hide Abstract
The genetic variability in bacterial species is much larger than in other kingdoms of life. The gene content between pairs of isolates can diverge by as much as 30% in species like Escherichia coli or Streptococcus pneumoniae. This unexpected finding led to the introduction of the concept of the pan-genome, the set of genes that can be found in a given bacterial species. The genome of any isolate is thus composed by a "core genome" shared by all strains and characteristic of the species, and a "dispensable genome" that accounts for many of the phenotypic differences between strains. The pan-genome is usually much larger than the genome of any single isolate and, given the ability of many bacteria to exchange genetic material with the environment, constitutes a reservoir that could enhance their ability to survive in a mutating environment. To understand the evolution of the pan-genome of an important pathogen and its interactions with the commensal microbial flora, we have analyzed the genomes of 44 strains of Streptococcus pneumoniae, one of the most important causes of microbial diseases in humans. Despite evidence of extensive homologous recombination, the S. pneumoniae phylogenetic tree reconstructed from polymorphisms in the core genome identified major groups of genetically related strains. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange with related species sharing the same ecological niche was the main mechanism of evolution of S. pneumonia; and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome of S. pneumoniae increased logarithmically with the number of strains and linearly with the variability of the sample, suggesting that acquired genes accumulate proportionately to the age of clones.
Related JoVE Video
A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44.
FASEB J.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Neisseria meningitidis is a major cause of septicemia and meningitis. The hypervirulent clonal complex 41/44 (cc41/44) has emerged as the predominant cause of serogroup B meningococcal disease, having been responsible for recent outbreaks and epidemics worldwide. However, the meningococcal factors that enable transition from asymptomatic carriage to rapidly progressing disease are poorly understood. Here we describe a novel phase-variable DNA methyltransferase, ModD, which was identified in the genome sequence of a New Zealand epidemic isolate. Investigation of the distribution of modD in the wider meningococcal population, by PCR and sequence analysis of genetically diverse N. meningitidis strains, revealed the presence of modD in 20/27 strains in cc41/44, but in only 2/47 strains from other clonal complexes, indicating a significant association of modD with cc41/44 (Fishers exact P value=3×10(-10)). The modD gene contains 5-ACCGA-3 repeats that mediate phase variation, leading to reversible on/off switching of modD expression. Microarray analysis of modD-on/off variants revealed that ModD regulates expression of multiple genes involved in colonization, infection, and protection against host defenses, with increased catalase expression in the modD-on variant conferring increased resistance to oxidative stress. The modulation of gene expression via the ModD phase-variable regulon (phasevarion), and its significant association with the cc41/44, suggest a role in the fitness and/or pathogenesis of strains belonging to the cc41/44.
Related JoVE Video
Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States.
Vaccine
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Neisseria meningitidis (Nm) serogroups B, C and Y are the major causes of meningococcal diseases in the United States. NmB accounts for ?1/3 of the disease but no licensed vaccine is yet available. Two candidate vaccines are being developed specifically to target NmB, but may also provide protection against other serogroups. To assess the potential impact of these vaccines on NmB and other serogroups causing disease in the US, we determined the prevalence, genetic diversity and epidemiological characteristics of three candidate antigen genes in Nm isolates collected through Active Bacterial Core surveillance (ABCs), a population-based active surveillance program. fHbp was detected in all NmB, NmY and NmW135 isolates. Eleven NmC isolates contain fHbp with a single base-pair deletion creating a frame shift in the C-terminal region. Among NmB, 59% were FHbp subfamily/variant B/v1 and 41% A/v2-3. Among NmC and NmY, 39% and 3% were B/v1, respectively. nadA was detected in 39% of NmB, 61% of NmC and 4% of NmY. Among isolates tested, nhbA was present in all NmB and 96% of non-B. For the subset of strains sequenced for NadA and NhbA, pairwise identity was greater than 93% and 78%, respectively. The proportion of FHbp subfamily/variant was different between ABCs site and year, but no linear temporal trend was observed. Although assessment of the vaccine coverage also requires understanding of the antigen expression and the ability to induce bactericidal activity, our finding that all isolates contain one or more antigen genes suggests these candidate vaccines may protect against multiple Nm serogroups.
Related JoVE Video
A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis.
Mol. Microbiol.
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
Small non-coding RNAs (sRNA) are emerging as key elements of post-transcriptional gene regulation in bacteria. The conserved Hfq protein is thought to function as an RNA chaperone and facilitate base-pairing between sRNAs and mRNA targets. In this study we identify a novel sRNA of Neisseria meningitidis through global gene expression studies of regulated transcripts in the Hfq mutant. The synthesis of this sRNA, named AniS, is anaerobically induced through activation of its promoter by the FNR global regulator. Whole-genome expression analyses led to the identification of putative mRNA targets, two of which are predicted to base pair with AniS. We show that Hfq binds the AniS transcript in vitro and is necessary for the downregulation of the identified target mRNAs in vivo. Contrary to many Hfq-dependent sRNA of the Enterobacteriaceae, Hfq promotes decay of AniS in N. meningitidis. Our analysis shows that the AniS regulator is part of the FNR regulon and may be responsible for the downregulation of FNR-repressed genes. Furthermore the presence of similar conserved regulatory sequences in all Neisseria spp. to date suggests that an analogous FNR-regulated sRNA, with a variable 5 sequence, may be ubiquitous to all commensals and pathogens of the Genus.
Related JoVE Video
Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival.
PLoS Pathog.
PUBLISHED: 02-26-2011
Show Abstract
Hide Abstract
During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ?30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.
Related JoVE Video
The Streptococcus pneumoniae pilus-1 displays a biphasic expression pattern.
PLoS ONE
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation), and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus expression phenotype could be an example of bistability in pneumococcus.
Related JoVE Video
Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.
Infect. Immun.
PUBLISHED: 12-13-2010
Show Abstract
Hide Abstract
Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58?fHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.
Related JoVE Video
Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-20-2010
Show Abstract
Hide Abstract
A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ?80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.
Related JoVE Video
Influence of sequence variability on bactericidal activity sera induced by Factor H binding protein variant 1.1.
Vaccine
PUBLISHED: 08-12-2010
Show Abstract
Hide Abstract
Factor H binding protein (fHbp), one of the main antigens of new vaccines against serogroup B meningococcus, varies in amino acid sequence and level of expression in different clinical isolates. To evaluate the contribution of amino acid sequence variability to vaccine coverage, we constructed a strain that is susceptible to bactericidal killing only by anti-fHbp antibodies and engineered it to express equal levels of 10 different fHbp sub-variants from a constitutive promoter. Testing of these isogenic strains showed that sera from mice or adult volunteers vaccinated with fHbp variant 1.1 were bactericidal against all sub-variants 1 sequences, however the titer against the most distant sequences were several times lower. Sera from vaccinated infants were more susceptible to amino acid variations and they had lower or no bactericidal activity against the distant sub-variants 1 sequences in comparison with sera from adults given the same vaccines. The low coverage provided by fHbp could be overcome using a multicomponent vaccine. We conclude that fHbp is a very important antigen that induces bactericidal antibodies in animals, adults and infants. However, given its high variability of sequence and expression level, it is unlikely that fHbp alone can provide good protection in infants against the distant amino acid sequence variants and therefore multicomponent vaccines inducing protective immunity also against other antigens are more likely to induce a broad protective immunity in all age groups.
Related JoVE Video
Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species.
Genome Biol.
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group.
Related JoVE Video
Src kinases are required for a balanced production of IL-12/IL-23 in human dendritic cells activated by Toll-like receptor agonists.
PLoS ONE
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play a key role in cytokines production during TLR4 activation in human DC.
Related JoVE Video
Characterization of fHbp, nhba (gna2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008 and potential coverage of an investigational group B meningococcal vaccine.
Clin. Vaccine Immunol.
PUBLISHED: 04-07-2010
Show Abstract
Hide Abstract
Invasive disease caused by meningococcal capsular groups A, C, W-135, and Y is now preventable by means of glycoconjugate vaccines that target their respective polysaccharide capsules. The capsule of group B meningococci (MenB) is poorly immunogenic and may induce autoimmunity. Vaccines based on the major immunodominant surface porin, PorA, are effective against clonal epidemics but, thus far, have a limited scope of coverage against the wider MenB population at large. In an alternative approach, the first-generation, investigational, recombinant MenB (rMenB) plus outer membrane vesicle (OMV) (rMenB-OMV) vaccine contains a number of relatively conserved surface proteins, fHBP, NHBA (previously GNA2132), and NadA, alongside PorA P1.4-containing OMVs from the New Zealand MeNZB vaccine. MenB currently accounts for approximately 90% of cases of meningococcal disease in England and Wales. To assess potential rMenB-OMV vaccine coverage of pathogenic MenB isolates within this region, all English and Welsh MenB case isolates from January 2008 (n = 87) were genetically characterized with respect to fHBP, NHBA, NadA, and PorA. Alleles for fHbp, nhba, and porA were identified in all of the isolates, of which 22% were also found to harbor nadA alleles. On the basis of genotypic data and predicted immunological cross-reactivity, the potential level of rMenB-OMV vaccine coverage in England and Wales ranges from 66% to 100%.
Related JoVE Video
Characterization of fHbp, nhba (gna2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales.
J. Clin. Microbiol.
PUBLISHED: 09-16-2009
Show Abstract
Hide Abstract
Highly effective glycoconjugate vaccines exist against four of the five major pathogenic groups of meningococci: A, C, W-135, and Y. An equivalent vaccine against group B meningococci (menB) has remained elusive due to the poorly immunogenic capsular polysaccharide. A promising alternative, the investigational recombinant menB (rMenB)- outer membrane vesicle (OMV) vaccine, contains fHBP, NHBA (previously GNA2132), NadA, and outer membrane vesicles (OMVs) from the New Zealand MeNZB vaccine. MenB currently accounts for 90% of meningococcal disease in England and Wales, where the multilocus sequence type (ST) 269 (ST269) clonal complex (cc269) has recently expanded to account for a third of menB cases. To assess the potential cc269 coverage of the rMenB-OMV vaccine, English and Welsh cc269 isolates from the past decade were genetically characterized with respect to fHBP, NHBA, and NadA. All of the isolates harbored fHbp and nhba alleles, while 98% of the cc269 isolates were devoid of nadA. Subvariant profiling of fHbp, nhba, and porA against STs revealed the presence of two broadly distinct and well-defined clusters of isolates, centered around ST269 and ST275, respectively. An additional molecular marker, insertion sequence IS1301, was found to be present in 100% and <2% of isolates of the respective clusters. On the basis of the genetic data, the potential rMenB-OMV coverage of cc269 in England and Wales is high (up to 100%) within both clusters. Expression studies and serum bactericidal antibody assays will serve to enhance predictions of coverage and will augment ongoing studies regarding the significance of IS1301 within the ST269 cluster.
Related JoVE Video
Intranasal administration of CpG induces a rapid and transient cytokine response followed by dendritic and natural killer cell activation and recruitment in the mouse lung.
J Innate Immun
PUBLISHED: 08-11-2009
Show Abstract
Hide Abstract
CpG-containing oligodeoxynucleotides are potent mucosal adjuvants and effective as stand-alone treatment of respiratory infections in mice. Although CpG is also used as a type 1 helper immunomodulator in the treatment of asthma and allergic disease, immune modulation following intranasal application has not been fully characterized yet. Using a B-type CpG, we monitored RNA expression profiles, cytokine production and cellular activation in lung tissue and bronchoalveolar lavages ex vivo and cytokine production of purified cell populations in vitro. CpG triggered the upregulation of many transcripts, including interferon response genes and proinflammatory cytokine genes, between 3 h and 4 days. Overlapping subsets of these cytokine proteins were induced in vitro in purified CD11c+ cells, B cells and alveolar macrophages from the lung, thus identifying these cells as direct targets of CpG. While lung B cells strongly respond to CpG in vitro, less activation is found ex vivo, suggesting efficient CpG sequestering or rapid B cell migration after activation. In contrast, a type II alveolar epithelial cell line did not respond to CpG in vitro. We noted selective recruitment of plasmacytoid dendritic cells (DCs) into the lung tissue, and of conventional DCs and natural killer (NK) cells into the lung tissue and bronchoalveolar space. Furthermore, CpG induced activation of intrapulmonary DCs, NK and T cells. We hypothesize that CpG-linked adjuvanticity and clearance of respiratory pathogens are mediated by two major mechanisms: transient induction of the interferon pathway limiting microbial survival and selective recruitment of DCs and NK cells, which allows for better adaptive responses.
Related JoVE Video
The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis.
J. Bacteriol.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
Previous microarray studies have suggested that an indirect mechanism of Fur regulation may be present in meningococcus at the posttranscriptional level through a small regulatory RNA (sRNA) system analogous to that of Escherichia coli and Pseudomonas aeruginosa. Recently, a Fur-regulated sRNA, NrrF, was identified that is involved in the iron regulation of the sdhA and sdhC succinate dehydrogenase genes. Here we report a detailed transcriptional analysis of the nrrF gene and show that NrrF is a Hfq-dependent sRNA. The Hfq protein mediates nrrF downregulation and Fur-dependent upregulation of the sdhCDAB operon, the major in vivo NrrF-regulated operon. NrrF forms a duplex in vitro with a region of complementarity overlapping the sdhDA mRNA junction. Furthermore, Hfq binds to NrrF in vitro and considerably enhances the efficiency of the interaction of the sRNA with the identified target. Our data suggest that Hfq-meditated binding of NrrF to the in vivo target in the sdhCDAB mRNA may cause the rapid degradation of the transcript, resulting in Fur-dependent positive regulation of succinate dehydrogenase. In addition, while the upregulation of sodB and fumB by Fur is dependent on the Hfq protein, it is unaffected in the nrrF knockout, which suggests that there is more than one sRNA regulator involved in iron homeostasis in meningococcus.
Related JoVE Video
Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus.
Vaccine
PUBLISHED: 02-21-2009
Show Abstract
Hide Abstract
With the aim of studying the molecular diversity of the antigens of a new recombinant vaccine against meningococcus serogroup B, the three genes coding for the main vaccine components GNA (Genome-derived Neisseria Antigen) 1870 (fHbp, factor H Binding Protein), GNA1994 (NadA, Neisseria adhesin A) and GNA2132 were sequenced in a panel of 85 strains collected worldwide and selected as representative of the serogroup B meningococcal diversity. No correlations were found between vaccine antigen variability and serogroup, geographic area and year of isolation. Although a relevant clustering was found with MLST clonal complexes, each showing an almost specific antigen variant repertoire, the prediction of the antigen assortment was not possible on the basis of MLST alone. Therefore, classification of meningococcus on the basis of MLST only is not sufficient to predict vaccine antigens diversity. Sequencing each gene in the different strains will be important to evaluate antigen conservation and assortment and to allow a future prediction of potential vaccine coverage.
Related JoVE Video
An extended multi-locus molecular typing schema for Streptococcus pneumoniae demonstrates that a limited number of capsular switch events is responsible for serotype heterogeneity of closely related strains from different countries.
Infect. Genet. Evol.
Show Abstract
Hide Abstract
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Pneumococcal strains are classified according to their capsular serotype and through a Multi-Locus Sequence Typing schema (MLST) based on the sequencing of seven housekeeping genes. However, strains with a defined allelic profile (Sequence Type, ST) can have different serotypes, suggesting that the micro-evolution of the MLST lineages leads to a considerable degree of phenotypic variability. To better investigate the genetic diversity within these lineages, we set-up and then validated an extended molecular typing schema (96-MLST) based on the sequencing of ninety-six genomic loci. 96-MLST loci were designed within core-genes in a collection of 39 complete genomes of S. pneumoniae. None of the capsular genes was included in the schema. When tested on a collection of 69 isolates, 96-MLST was able to partition strains with the same ST and diverse serotypes into groups that were homogenous for capsular serotype, improving our understanding of the evolution of epidemiologically relevant lineages. Phylogenetic sequence analysis showed that the capsular heterogeneity of three STs that were sampled more extensively could be traced back to a limited number of capsular switch events, indicating that changes of serotype occur occasionally during the short term expansion of clones. Moreover, a geographical structure of ST156 was identified, suggesting that the resolution guaranteed by this method is sufficient for phylogeographic studies. In conclusion, we showed that an extended typing schema was able to characterize the expansion of individual lineages in a complex species such as S. pneumoniae.
Related JoVE Video
Analysis of the regulated transcriptome of Neisseria meningitidis in human blood using a tiling array.
J. Bacteriol.
Show Abstract
Hide Abstract
Neisseria meningitidis is the major cause of septicemia and meningococcal meningitis. During the course of infection, the bacterium must adapt to different host environments as a crucial factor for survival and dissemination; in particular, one of the crucial factors in N. meningitidis pathogenesis is the ability to grow and survive in human blood. We recently showed that N. meningitidis alters the expression of 30% of the open reading frames (ORFs) of the genome during incubation in human whole blood and suggested the presence of fine regulation at the gene expression level in order to control this step of pathogenesis. In this work, we used a customized tiling oligonucleotide microarray to define the changes in the whole transcriptional profile of N. meningitidis in a time course experiment of ex vivo bacteremia by incubating bacteria in human whole blood and then recovering RNA at different time points. The application of a newly developed bioinformatic tool to the tiling array data set allowed the identification of new transcripts--small intergenic RNAs, cis-encoded antisense RNAs, mRNAs with extended 5 and 3 untranslated regions (UTRs), and operons--differentially expressed in human blood. Here, we report a panel of expressed small RNAs, some of which can potentially regulate genes involved in bacterial metabolism, and we show, for the first time in N. meningitidis, extensive antisense transcription activity. This analysis suggests the presence of a circuit of regulatory RNA elements used by N. meningitidis to adapt to proliferate in human blood that is worthy of further investigation.
Related JoVE Video
MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action.
J. Immunol.
Show Abstract
Hide Abstract
The innate immune pathways induced by adjuvants required to increase adaptive responses to influenza subunit vaccines are not well characterized. We profiled different TLR-independent (MF59 and alum) and TLR-dependent (CpG, resiquimod, and Pam3CSK4) adjuvants for the ability to increase the immunogenicity to a trivalent influenza seasonal subunit vaccine and to tetanus toxoid (TT) in mouse. Although all adjuvants boosted the Ab responses to TT, only MF59 and Pam3CSK4 were able to enhance hemagglutinin Ab responses. To identify innate immune correlates of adjuvanticity to influenza subunit vaccine, we investigated the gene signatures induced by each adjuvant in vitro in splenocytes and in vivo in muscle and lymph nodes using DNA microarrays. We found that flu adjuvanticity correlates with the upregulation of proinflammatory genes and other genes involved in leukocyte transendothelial migration at the vaccine injection site. Confocal and FACS analysis confirmed that MF59 and Pam3CSK4 were the strongest inducers of blood cell recruitment in the muscle compared with the other adjuvants tested. Even though it has been proposed that IFN type I is required for adjuvanticity to influenza vaccines, we found that MF59 and Pam3CSK4 were not good inducers of IFN-related innate immunity pathways. By contrast, resiquimod failed to enhance the adaptive response to flu despite a strong activation of the IFN pathway in muscle and lymph nodes. By blocking IFN type I receptor through a mAb, we confirmed that the adjuvanticity of MF59 and Pam3CSK4 to a trivalent influenza vaccine and to TT is IFN independent.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.