JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structure-activity relationships of the N-terminus of calcitonin gene-related peptide: key roles of alanine-5 and threonine-6 in receptor activation.
Br. J. Pharmacol.
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1-7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3-6 and 8-9, excluding Cys-2 and Cys-7.
Related JoVE Video
Human aquaporins: Regulators of transcellular water flow.
Biochim. Biophys. Acta
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes.
Related JoVE Video
Comparing the molecular pharmacology of CGRP and adrenomedullin.
Curr. Protein Pept. Sci.
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
CGRP and adrenomedullin [AM] are peptides that have a number of physiological effects, including vasodilation, through the activation of a shared GPCR, the family B calcitonin receptor-like receptor [CLR]. Specificity to each ligand is conferred through the unusual association of CLR with a single transmembrane accessory protein. For CGRP this is receptor activity-modifying protein 1 [RAMP1] and for AM acting at the AM1 receptor this is RAMP2. Receptor signalling by two specific peptide ligands through a common GPCR provides researchers with vital and unique information into similarities and differences of GPCR activation. Understanding the structure and function of these receptors will also provide a platform for future drug design for a number of cardiovascular and metabolic diseases in which CGRP and AM have been implicated. This review summarises the latest information and data concerning ligand binding, receptor activation and structural studies for both the CGRP and AM receptors.
Related JoVE Video
The activation of the CGRP receptor.
Biochem. Soc. Trans.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. CLR is an example of a family B GPCR. Unlike family A GPCRs, little is known about how these receptors are activated by their endogenous ligands. This review considers what is known about the activation of family B GPCRs and then considers how this might be applied to CLR, particularly in light of new knowledge of the crystal structures of family A GPCRs.
Related JoVE Video
The role of ECL2 in CGRP receptor activation: a combined modelling and experimental approach.
J R Soc Interface
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271-294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed.
Related JoVE Video
The use of site-directed mutagenesis to study GPCRs.
Methods Mol. Biol.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
G protein coupled receptors (GPCRs) are highly flexible and dynamic proteins, which are able to interact with diverse ligands, effectors, and regulatory proteins. Site-directed mutagenesis (SDM) is a powerful tool for providing insight into how these proteins actually work, both in its own right and when used in conjunction with information provided by other techniques such as crystallography or molecular modelling. Mutagenesis has been used to identify and characterise a myriad of functionally important residues, motifs and domains within the GPCR architecture, and to identify aspects of similarity and differences between the major families of GPCRs. This chapter presents the necessary information for undertaking informative SDM of these proteins. Whilst this is relevant to protein structure/function studies in -general, specific pitfalls and protocols suited to investigating GPCRs in particular will be highlighted.
Related JoVE Video
Extracellular loops 1 and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function.
Biochim. Biophys. Acta
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced ?CGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced ?CGRP binding. These residues form a hydrophobic cluster within an area defined as the "minor groove" of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of ?CGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on ?CGRP binding and cAMP production; they are likely to indirectly influence the binding site for ?CGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired ?CGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.
Related JoVE Video
Adiponectin (15-36) stimulates steroidogenic acute regulatory (StAR) protein expression and cortisol production in human adrenocortical cells: role of AMPK and MAPK kinase pathways.
Biochim. Biophys. Acta
PUBLISHED: 01-17-2011
Show Abstract
Hide Abstract
Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Related JoVE Video
Developmental comorbidity in attention-deficit/hyperactivity disorder.
Atten Defic Hyperact Disord
PUBLISHED: 09-14-2010
Show Abstract
Hide Abstract
With the present review, we intend to highlight the importance of considering the age- and development-dependent occurrence of comorbidity in ADHD and to outline distinct trajectories of symptom progression with possible impact on course and outcome of ADHD. The review will focus on introducing the concepts of "developmental epidemiology" and "developmental comorbidity". Psychiatric and non-psychiatric age-dependent comorbidity can be seen in the majority of children, adolescents and adults with ADHD, resulting in a severe impairment of everyday life with considerable functional and psychosocial problems. Concerning the temporal order of occurrence, psychiatric conditions may be present before the appearance of first definite ADHD symptoms ("pre-comorbidity", such as temperament factors, sleep disturbance, autism spectrum disorders and atopic eczema). They may coincide with the time when ADHD symptoms reach a clinically significant level ("simultaneous comorbidity": enuresis, encopresis, developmental dyslexia). The majority of comorbidity, however, appears after the onset of ADHD in the course of disease ("post-comorbidity": tic disorder, depression and suicidality, anxiety disorders, obsessive compulsive disorder, bipolar disorder, conduct and substance use disorders, obesity and personality disorders). The aetio-pathophysiology of ADHD and its comorbid disorders and also the nature of comorbidity itself being highly heterogeneous, we additionally discuss possible models of comorbidity. In the future, longitudinal data on distinct patterns of symptom and comorbidity progression would help to refine disease classification systems, strengthen the power of future genetic studies and finally allow for more specific treatment strategies.
Related JoVE Video
Regulation of signal transduction by calcitonin gene-related peptide receptors.
Trends Pharmacol. Sci.
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
Calcitonin gene-related peptide (CGRP) plays a pivotal role in migraine, activating its cognate receptor to initiate intracellular signalling. This atypical receptor comprises a distinct assembly, made up of a G protein-coupled receptor (GPCR), a single transmembrane protein, and an additional protein that is required for G?(s) coupling. By altering the expression of individual receptor components, it might be possible to adjust cellular sensitivity to CGRP. In recognition of the increasing clinical significance of CGRP receptors, it is timely to review the signalling pathways that might be controlled by this receptor, how the activity of the receptor itself is regulated, and our current understanding of the molecular mechanisms involved in these processes. Like many GPCRs, the CGRP receptor appears to be promiscuous, potentially coupling to several G proteins and intracellular pathways. Their precise composition is likely to be cell type-dependent, and much work is needed to ascertain their physiological significance.
Related JoVE Video
Regulation of beta-cell viability and gene expression by distinct agonist fragments of adiponectin.
Peptides
PUBLISHED: 02-08-2010
Show Abstract
Hide Abstract
Obesity is an established risk factor for type 2 diabetes. Activation of the adiponectin receptors has a clear role in improving insulin resistance although conflicting evidence exists for its effects on pancreatic beta-cells. Previous reports have identified both adiponectin receptors (ADR-1 and ADR-2) in the beta-cell. Recent evidence has suggested that two distinct regions of the adiponectin molecule, the globular domain and a small N-terminal region, have agonist properties. This study investigates the effects of two agonist regions of adiponectin on insulin secretion, gene expression, cell viability and cell signalling in the rat beta-cell line BRIN-BD11, as well as investigating the expression levels of adiponectin receptors (ADRs) in these cells. Cells were treated with globular adiponectin and adiponectin (15-36) +/-leptin to investigate cell viability, expression of key beta-cell genes and ERK1/2 activation. Both globular adiponectin and adiponectin (15-36) caused significant ERK1/2 dependent increases in cell viability. Leptin co-incubation attenuated adiponectin (15-36) but not globular adiponectin induced cell viability. Globular adiponectin, but not adiponectin (15-36), caused a significant 450% increase in PDX-1 expression and a 45% decrease in LPL expression. ADR-1 was expressed at a higher level than ADR-2, and ADR mRNA levels were differentially regulated by non-esterified fatty acids and peroxisome-proliferator-activated receptor agonists. These data provide evidence of roles for two distinct adiponectin agonist domains in the beta-cell and confirm the potentially important role of adiponectin receptor agonism in maintaining beta-cell mass.
Related JoVE Video
Membrane trafficking of aquaporin 1 is mediated by protein kinase C via microtubules and regulated by tonicity.
Biochemistry
PUBLISHED: 01-13-2010
Show Abstract
Hide Abstract
It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.
Related JoVE Video
CGRP receptor antagonists: design and screening.
Expert Opin Drug Discov
PUBLISHED: 12-01-2009
Show Abstract
Hide Abstract
Importance of the field: Calcitonin gene-related peptide (CGRP) receptor antagonists have recently come to attention with the development of olcegepant and telcagepant for the treatment of migraine. The availability of high-affinity, non-peptide antagonists opens the way for trials of these compounds in other conditions where CGRP antagonism might be useful, such as septic shock and inhibition of angiogenesis. Areas covered in this review: This review summarises knowledge about the structure and signalling properties of the CGRP receptor. The clinical ramifications of targeting the CGRP receptor, the profiles of existing antagonists and the requirements for screening new compounds will be discussed. What the reader will gain: Readers will gain an overview of how current non-peptide antagonists seem to bind similar epitopes contributed by both calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), the main CGRP receptor subunits. We will discuss how current antagonists have low bioavailability, limiting their use. For selectivity at CGRP receptors, it will be necessary to target parts of the receptor influenced by both RAMP1 and CLR. Take home message: For the design of radically new antagonists, more structural information on the receptor is needed. Current screens are largely based on measuring CGRP-mediated changes in cAMP. CGRP receptors can influence other signalling pathways and pathway-selective allosteric antagonists may be useful, but more information is needed about the mechanism of action of CGRP to assess the value of this.
Related JoVE Video
Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells.
J. Mol. Endocrinol.
PUBLISHED: 11-11-2009
Show Abstract
Hide Abstract
The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic beta-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic beta-cells. beta-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF)1beta (32-fold increase), HNF4alpha (16-fold increase) and nuclear factor kappaB (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (-3.73-fold) and UCP2 (-1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P<0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of beta-cell function-associated genes in mouse beta-cells.
Related JoVE Video
Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.
J. Endocrinol.
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.
Related JoVE Video
Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies.
J R Soc Interface
Show Abstract
Hide Abstract
Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A-class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg(2.39), His(2.43) and Glu(3.46), which makes a polar lock with T(6.37). These alignments and models provide useful tools for understanding class B GPCR function.
Related JoVE Video
An emerging consensus on aquaporin translocation as a regulatory mechanism.
Mol. Membr. Biol.
Show Abstract
Hide Abstract
Water passes through cell membranes relatively slowly by diffusion. In order to maintain water homeostasis, the rapid and specific regulation of cellular water flow is mediated by the aquaporin (AQP) family of membrane protein water channels. The wide range of tissues that are known to express AQPs is reflected by their involvement in many physiological processes and diseases; thirteen human AQPs have been identified to date and the majority are highly specific for water while others show selectivity for water, glycerol and other small solutes. Receptor mediated translocation, via hormone activation, is an established method of AQP regulation, especially for AQP2. There is now an emerging consensus that the rapid and reversible translocation of other AQPs from intracellular vesicles to the plasma membrane, triggered by a range of stimuli, confers altered membrane permeability thereby acting as a regulatory mechanism. This review examines the molecular components that may enable such AQP regulation; these include cytoskeletal proteins, kinases, calcium and retention or localization signals. Current knowledge on the dynamic regulation of sub-cellular AQP translocation in response to a specific trigger is explored in the context of the regulation of cellular water flow.
Related JoVE Video
The role of the extracellular loops of the CGRP receptor, a family B GPCR.
Biochem. Soc. Trans.
Show Abstract
Hide Abstract
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. There have been few systematic studies of the ECLs (extracellular loops) of family B GPCRs. However, they are likely to be especially important for the interaction of the N-termini of the peptide agonists that are the natural agonists for these receptors. We have carried out alanine scans on all three ECLs of CLR, as well as their associated juxtamembrane regions. Residues within all three loops influence CGRP binding and receptor activation. Mutation of Ala203 and Ala206 on ECL1 to leucine increased the affinity of CGRP. Residues at the top of TM (transmembrane) helices 2 and 3 influenced CGRP binding and receptor activation. L351A and E357A in TM6/ECL3 reduced receptor expression and may be needed for CLR association with RAMP1. ECL2 seems especially important for CLR function; of the 16 residues so far examined in this loop, eight residues reduce the potency of CGRP at stimulating cAMP production when mutated to alanine.
Related JoVE Video
Rapid aquaporin translocation regulates cellular water flow: mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel.
J. Biol. Chem.
Show Abstract
Hide Abstract
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The structural features of the family and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this only has been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here, we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations through transient receptor potential channels, which trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30 s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly changing local cellular water availability. Moreover, because calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.