JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.
J Phys D Appl Phys
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.
Related JoVE Video
Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin.
J. Inorg. Biochem.
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
Antitumor activity of cisplatin is exerted by covalent binding to DNA. For comparison, studies of cisplatin-DNA complexes often employ the very similar but inactive transplatin. In this work, thermal and thermodynamic properties of DNA complexes with these compounds were studied using differential scanning calorimetry (DSC) and computer modeling. DSC demonstrates that cisplatin decreases thermal stability (melting temperature, Tm) of long DNA, and transplatin increases it. At the same time, both compounds decrease the enthalpy and entropy of the helix-coil transition, and the impact of transplatin is much higher. From Pt/nucleotide molar ratio rb=0.001, both compounds destroy the fine structure of DSC profile and increase the temperature melting range (?T). For cisplatin and transplatin, the dependences ?Tm vs rb differ in sign, while ??T vs rb are positive for both compounds. The change in the parameter ??T vs rb demonstrates the GC specificity in the location of DNA distortions. Our experimental results and calculations show that 1) in contrast to [Pt(dien)Cl]Cl, monofunctional adducts formed by transplatin decrease the thermal stability of long DNA at [Na(+)]>30mM; 2) interstrand crosslinks of cisplatin and transplatin only slightly increase Tm; 3) the difference in thermal stability of DNA complexes with cisplatin vs DNA complexes with transplatin mainly arises from the different thermodynamic properties of their intrastrand crosslinks. This type of crosslink appears to be responsible for the antitumor activity of cisplatin. At any [Na(+)] from interval 10-210mM, cisplatin and transplatin intrastrand crosslinks give rise to destabilization and stabilization, respectively.
Related JoVE Video
Low-molecular weight heparin increases circulating sFlt-1 levels and enhances urinary elimination.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo.
Related JoVE Video
Reduction of low-density lipoprotein cholesterol, plasma viscosity, and whole blood viscosity by the application of pulsed corona discharges and filtration.
Rev Sci Instrum
PUBLISHED: 04-06-2013
Show Abstract
Hide Abstract
The present study investigated the feasibility of applying pulsed corona discharges to blood plasma to reduce the viscosity of blood plasma and whole blood. Blood plasma was separated from blood cells, treated with corona discharges, and filtered before it was re-mixed with blood cells. Plasma viscosity (PV), whole blood viscosity (WBV), and low-density lipoprotein (LDL)-c concentration were measured before and after the corona treatment and filtration. Both PV and WBV increased in the case of the corona treatment only, whereas both of them decreased in the case of the corona treatment plus filtration. In particular, the LDL-c decreased in the case of the corona treatment plus filtration by 31.5% from the baseline value. The effect of the corona treatment on the reduction of the WBV was significant at low shear rates, but not at high shear rates, suggesting that the precipitation of the molecules in blood plasma by the corona treatment and subsequent removal may suppress the aggregation of erythrocytes and improve rheological properties of blood.
Related JoVE Video
Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing ?-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury.
Related JoVE Video
Inactivation of bacteria using dc corona discharge: role of ions and humidity.
New J Phys
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
Here we present the results of an experimental study of the effect of ions produced in a dc corona discharge on inactivation of bacteria on the surface of agarose gel. Both positive and negative corona discharges in various gases at different humidities were studied. The measurements in air, O(2), N(2), Ar and He mixtures show that there is no inactivation in pure N(2), pure O(2) and an N(2)-H(2)O mixture. The best results were achieved in the case of direct treatment, when discharge was ignited in oxygen and water-containing mixtures. We show that neither UV radiation, ozone or H(2)O(2) nor other neutral active species alone produced by corona have an effect on bacteria viability. It is shown that the main role of charged particles may be related to the faster transport of active peroxide species-cluster ions OH(-)(H(2)O)(n) and H(3)O(+)(H(2)O)(n). The efficiency of these radicals is much higher than that of the oxygen radicals and ions (including [Formula: see text] and O(3)) and that of nitrogen and argon ions.
Related JoVE Video
Self-Organization and Migration of Dielectric Barrier Discharge Filaments in Argon Gas Flow.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc
PUBLISHED: 08-22-2011
Show Abstract
Hide Abstract
Observations of atmospheric-pressure dielectric barrier discharge are conducted through a water-filled electrode in atmospheric-pressure argon gas flow. Quasi-symmetric self-organized discharge filaments were observed. The streamers moved with the gas flow, and the migration velocity increased with increasing gas velocity.
Related JoVE Video
Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.
J R Soc Interface
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.
Related JoVE Video
Effects of non-thermal plasma on mammalian cells.
PLoS ONE
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized ?-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers.
Related JoVE Video
Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.
Antimicrob. Agents Chemother.
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as ?-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.
Related JoVE Video
Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species.
Ann Biomed Eng
PUBLISHED: 07-03-2010
Show Abstract
Hide Abstract
Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p < 0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm(2). TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p < 0.001) at a dose of 15 J/cm(2). Pre-treatment with N-acetyl-L: -cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm(2). Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by ?-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies.
Related JoVE Video
Application of pulsed spark discharge for calcium carbonate precipitation in hard water.
Water Res.
PUBLISHED: 02-08-2010
Show Abstract
Hide Abstract
The effect of underwater pulsed spark discharge on the precipitation of dissolved calcium ions was investigated in the present study. Water samples with different calcium hardness were prepared by continuous evaporation of tap water using a laboratory cooling tower. It was shown that the concentration of calcium ions dropped by 20-26% after 10-min plasma treatment, comparing with no drop for untreated cases. A laser particle counting method demonstrated that the total number of solid particles suspended in water increased by over 100% after the plasma treatment. The morphology and the crystal form of the particles were identified by both scanning electron microscopy and X-ray diffraction. Calcite with rhombohedron morphology was observed for plasma treated cases, comparing with the round structure observed for no-treatment cases. It was hypothesized that the main mechanisms for the plasma-assisted calcium carbonate precipitation might include electrolysis, local heating in the vicinity of plasma channel and a high electric field at the tip of plasma streamers, inducing structural changes in the electric double layer of hydrated ions.
Related JoVE Video
Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma.
Am J Infect Control
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
Bacterial contamination of surfaces with methicillin-resistant Staphylococcus aureus (MRSA) is a serious problem in the hospital environment and is responsible for significant nosocomial infections. The pathogenic contaminants form biofilms, which are difficult to treat with routine biocides. Thus, a continuous search for novel disinfection methods is essential for effective infection control measures. This demonstration of a novel technique for the control of virulent pathogens in planktonic form as well as in established biofilms may provide a progressive alternative to standard methodology.
Related JoVE Video
Cell proliferation following non-thermal plasma is related to reactive oxygen species induced fibroblast growth factor-2 release.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 12-08-2009
Show Abstract
Hide Abstract
Non-thermal dielectric barrier discharge plasma is currently being developed for a wide range of medical applications, including blood coagulation, malignant cell apoptosis, and wound healing. However, the effect of non-thermal plasma on the vasculature is unclear. Blood vessels are affected during plasma treatment of many tissues, and vessels themselves may be an important clinical plasma therapy target. We investigated the effect of non-thermal plasma treatment on endothelial cells, which line the inner surface of blood vessels. Non-thermal plasma treatment at short exposures (up to 30 seconds; 4 J/cm(2)) was relatively non-toxic to endothelial cells. Endothelial cells treated with plasma for 30 seconds demonstrated twice as much proliferation as untreated cells five days after plasma treatment. Proliferation was abrogated by a fibroblast growth factor-2 neutralizing antibody and reactive oxygen species inhibitors. This suggests that plasma-induced endothelial cell proliferation is caused by growth factor release following reactive oxygen species cell membrane damage. These data suggest that low power non-thermal plasma treatment is a potential novel therapy for promotion of endothelial cell mediated angiogenesis.
Related JoVE Video
Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release.
Ann Biomed Eng
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
Non-thermal dielectric barrier discharge plasma is being developed for a wide range of medical applications, including wound healing, blood coagulation, and malignant cell apoptosis. However, the effect of non-thermal plasma on the vasculature is unclear. Blood vessels are affected during plasma treatment of many tissues and may be an important potential target for clinical plasma therapy. Porcine aortic endothelial cells were treated in vitro with a custom non-thermal plasma device. Low dose plasma (up to 30 s or 4 J cm(-2)) was relatively non-toxic to endothelial cells while treatment at longer exposures (60 s and higher or 8 J cm(-2)) led to cell death. Endothelial cells treated with plasma for 30 s demonstrated twice as much proliferation as untreated cells five days after plasma treatment. Endothelial cell release of fibroblast growth factor-2 (FGF2) peaked 3 h after plasma treatment. The plasma proliferative effect was abrogated by an FGF2 neutralizing antibody, and FGF2 release was blocked by reactive oxygen species scavengers. These data suggest that low dose non-thermal plasma enhances endothelial cell proliferation due to reactive oxygen species mediated FGF2 release. Plasma may be a novel therapy for dose-dependent promotion or inhibition of endothelial cell mediated angiogenesis.
Related JoVE Video
Thermal stability of DNA with interstrand crosslinks.
Biopolymers
Show Abstract
Hide Abstract
Although many anticancer drugs exert their biological activity by forming DNA interstrand crosslinks (ICLs), the thermodynamics of biologically relevant long crosslinked DNAs has not been intensively studied in contrast to short duplexes. Here, we carry out computer modeling of the shift of melting temperature of long DNAs caused by ICLs taking into account crosslinking effect in itself and concomitant local alterations in the free energy (?G) of the helix-coil transition at sites of ICLs. Depending on ?G, DNA interstrand crosslinks at per nucleotide concentration r = 0.05 can change the melting temperature by value from -17 to +47°C, and the influence weakly depends on DNA sequence and GC content. A change in melting temperature caused by introduction of interstrand crosslinking in modified DNA at sites of modifications also depends on ?G and varies from 0 to +12°C. Comparison with experiment for the three platinum crosslinking compounds demonstrates utility of the theoretical method for understanding how crosslinking compounds can influence the melting behavior. On the basis of the method, interdependence of local distortions and crosslinking in itself was studied for thermal effect of ICLs. A method for evaluating the nature of the structural alteration that produces a change in thermal stability for short crosslinked DNA is also proposed. The methods can be used for comparative thermodynamic characterization of various DNA crosslinking agents.
Related JoVE Video
Porcine intact and wounded skin responses to atmospheric nonthermal plasma.
J. Surg. Res.
Show Abstract
Hide Abstract
Thermal plasma is a valued tool in surgery for its coagulative and ablative properties. We suggested through in vitro studies that nonthermal plasma can sterilize tissues, inactive pathogens, promote coagulation, and potentiate wound healing. The present research was undertaken to study acute toxicity in porcine skin tissues. We demonstrate that floating electrode-discharge barrier discharge (FE-DBD) nonthermal plasma is electrically safe to apply to living organisms for short periods. We investigated the effects of FE-DBD plasma on Yorkshire pigs on intact and wounded skin immediately after treatment or 24h posttreatment. Macroscopic or microscopic histological changes were identified using histological and immunohistochemical techniques. The changes were classified into four groups for intact skin: normal features, minimal changes or congestive changes, epidermal layer damage, and full burn and into three groups for wounded skin: normal, clot or scab, and full burn-like features. Immunohistochemical staining for laminin layer integrity showed compromise over time. A marker for double-stranded DNA breaks, ?-H2AX, increased over plasma-exposure time. These findings identified a threshold for plasma exposure of up to 900s at low power and <120s at high power. Nonthermal FE-DBD plasma can be considered safe for future studies of external use under these threshold conditions for evaluation of sterilization, coagulation, and wound healing.
Related JoVE Video
Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica.
J. Food Prot.
Show Abstract
Hide Abstract
Nonthermal plasma has been shown to be effective in reducing pathogens on the surface of a range of fresh produce products. The research presented here investigated the effectiveness of nonthermal dielectric barrier discharge plasma on Salmonella enterica and Campylobacter jejuni inoculated onto the surface of boneless skinless chicken breast and chicken thigh with skin. Chicken samples were inoculated with antibiotic-resistant strains of S. enterica and C. jejuni at levels of 10(1) to 10(4) CFU and exposed to plasma for a range of time points (0 to 180 s in 15-s intervals). Surviving antibiotic-resistant pathogens were recovered and counted on appropriate agar. In order to determine the effect of plasma on background microflora, noninoculated skinless chicken breast and thighs with skin were exposed to air plasma at ambient pressure. Treatment with plasma resulted in elimination of low levels (10(1) CFU) of both S. enterica and C. jejuni on chicken breasts and C. jejuni from chicken skin, but viable S. enterica cells remained on chicken skin even after 20 s of exposure to plasma. Inoculum levels of 10(2), 10(3), and 10(4) CFU of S. enterica on chicken breast and chicken skin resulted in maximum reduction levels of 1.85, 2.61, and 2.54 log, respectively, on chicken breast and 1.25, 1.08, and 1.31 log, respectively, on chicken skin following 3 min of plasma exposure. Inoculum levels of 10(2), 10(3), and 10(4) CFU of C. jejuni on chicken breast and chicken skin resulted in maximum reduction levels of 1.65, 2.45, and 2.45 log, respectively, on chicken breast and 1.42, 1.87, and 3.11 log, respectively, on chicken skin following 3 min of plasma exposure. Plasma exposure for 30 s reduced background microflora on breast and skin by an average of 0.85 and 0.21 log, respectively. This research demonstrates the feasibility of nonthermal dielectric barrier discharge plasma as an intervention to help reduce foodborne pathogens on the surface of raw poultry.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.