JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
High Prevalence of Rickettsia africae Variants in Amblyomma variegatum Ticks from Domestic Mammals in Rural Western Kenya: Implications for Human Health.
Vector Borne Zoonotic Dis.
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
Abstract Tick-borne spotted fever group (SFG) rickettsioses are emerging human diseases caused by obligate intracellular Gram-negative bacteria of the genus Rickettsia. Despite being important causes of systemic febrile illnesses in travelers returning from sub-Saharan Africa, little is known about the reservoir hosts of these pathogens. We conducted surveys for rickettsiae in domestic animals and ticks in a rural setting in western Kenya. Of the 100 serum specimens tested from each species of domestic ruminant 43% of goats, 23% of sheep, and 1% of cattle had immunoglobulin G (IgG) antibodies to the SFG rickettsiae. None of these sera were positive for IgG against typhus group rickettsiae. We detected Rickettsia africae-genotype DNA in 92.6% of adult Amblyomma variegatum ticks collected from domestic ruminants, but found no evidence of the pathogen in blood specimens from cattle, goats, or sheep. Sequencing of a subset of 21 rickettsia-positive ticks revealed R. africae variants in 95.2% (20/21) of ticks tested. Our findings show a high prevalence of R. africae variants in A. variegatum ticks in western Kenya, which may represent a low disease risk for humans. This may provide a possible explanation for the lack of African tick-bite fever cases among febrile patients in Kenya.
Related JoVE Video
Rickettsia parkeri and Rickettsia montanensis, Kentucky and Tennessee, USA.
Emerging Infect. Dis.
PUBLISHED: 10-02-2014
Show Abstract
Hide Abstract
We found that 14.3% (15/105) of Amblyomma maculatum and 3.3% (10/299) of Dermacentor variabilis ticks collected at 3 high-use military training sites in west-central Kentucky and northern Tennessee, USA, were infected with Rickettsia parkeri and Rickettsia montanensis, respectively. These findings warrant regional increased public health awareness for rickettsial pathogens and disease.
Related JoVE Video
The prevalence of rickettsial and ehrlichial organisms in Amblyomma americanum ticks collected from Ohio and surrounding areas between 2000 and 2010.
Ticks Tick Borne Dis
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
The lone star tick, Amblyomma americanum, feeds upon a variety of hosts and is a known vector of several human pathogens. In Ohio, populations of A. americanum have been expanding their range and increasing in abundance and distribution, thereby elevating the public health concerns regarding bites from this species. We used a set of PCR assays to detect the presence of ehrlichial and rickettsial species in A. americanum ticks submitted to the Ohio Department of Health Zoonotic Disease Program over an 11-year period (2000-2010). We did not detect the presence of known pathogens Rickettsia rickettsii or Ehrlichia chaffeensis, but we did identify the presence of two other bacterial species: 'Candidatus Rickettsia amblyommii', and Ehrlichia sp. Panola Mountain. 'Candidatus R. amblyommii' was the most common species identified (30.2%), whereas the ehrlichiae was quite rare (0.6%). With growing evidence implicating both 'Candidatus Rickettsia amblyommii' and Ehrlichia sp. Panola Mountain in mild to moderate human disease, our results support the importance of continued monitoring of A. americanum ticks for the presence of potential pathogens.
Related JoVE Video
Development and validation of a quantitative real-time polymerase chain reaction assay specific for the detection of Rickettsia felis and not Rickettsia felis-like organisms.
Vector Borne Zoonotic Dis.
PUBLISHED: 06-11-2014
Show Abstract
Hide Abstract
Human infections with Rickettsia felis have been reported worldwide. Recent studies have revealed the presence of many closely related but unique rickettsiae, referred to as Rickettsia felis-like organisms (RFLO), identified in various arthropods. Due to the recent discovery of the lack of specificity of earlier R. felis-specific assays, there has become a need to develop a new generation of R. felis-specific molecular assays that will differentiate R. felis not only from other rickettsiae but more importantly from other members of the R. felis genogroup that may not be pathogenic to humans. This new generation of assays is essential for determining the true risk for flea-borne spotted fever (FBSF) by surveying arthropod vectors/hosts. Because of the lack of specificity of previous assays developed to detect R. felis infections, prior surveys may have overestimated the prevalence of R. felis in arthropod vectors and thus the perceived risk of FBSF. We have developed a specific quantitative real-time polymerase chain reaction (qPCR) assay to detect R. felis (RfelB). Specificity of the assay was determined by testing it with a panel of 17 related Rickettsia species and 12 nonrickettsial bacterial DNA preparations. The RfelB qPCR assay was positive for R. felis DNA and negative for all of the 17 related Rickettsia species and 12 nonrickettsia bacterial DNA preparations. The limit of detection of the RfelB qPCR assay was determined to be two copies (two genoequivalents) per microliter of R. felis target ompB fragment-containing plasmid. Validation of the RfelB qPCR assay was accomplished by testing 83 previously sequence-confirmed R. felis and RFLOs containing DNA preparations from human and flea samples collected from different geographical locations around the world. This assay will be useful for rapid detection, identification, and enumeration of R. felis, an emerging human pathogen of worldwide importance, from both clinical and environmental samples.
Related JoVE Video
Establishment of Orientia tsutsugamushi Lc-1 (Rickettsiales: Rickettsiaceae) infection in ICR outbred mice (Rodentia: Muridae) by needle challenge.
J. Med. Entomol.
PUBLISHED: 06-06-2014
Show Abstract
Hide Abstract
Orientia tsutsugamushi is a pathogen transmitted by Leptotrombidium that causes scrub typhus. To develop an infection mouse model, a mite-derived isolate of O. tsutsugamushi was established from a laboratory-maintained colony of Leptotrombidium chiangraiensis (O. tsutsugamushi Lc-1). This Lc-1 isolate was initially presented to ICR (CD-1) mice by feeding an infected Lc chigger on the ear of a mouse. Once the Lc-1 was adapted to the ICR mice, quantitative real-time polymerase chain reaction was used to investigate O. tsutsugamushi genomic equivalent copies in tissues and sera. Furthermore, times to onset of the signs of infection are reported in this study. This study provides information useful for future research on this host-pathogen interaction and the associated vaccine efficacy trials.
Related JoVE Video
Growth of Rickettsia felis in Drosophila melanogaster S2 cells.
Vector Borne Zoonotic Dis.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Rickettsia felis is an obligate, intracellular, Gram-negative bacterium and a member of the transitional group rickettsiae. This bacterium has been shown to grow in vitro in amphibian, tick, and mosquito cell lines. Here, we present data to show the growth of R. felis strain LSU in Drosophila melanogaster S2 cells, an embryonic, hemocytic cell line with phagocytic properties. R. felis LSU was isolated from Ixodes scapularis E6 (ISE6) cells and used to infect S2 cells, grown at 25°C. By 19 days postinfection, the S2 cells were 100% infected with R. felis as determined by Acridine Orange and Diff-Quik staining. A species-specific R. felis qPCR assay was used to demonstrate that the kinetics associated with the S2 cell culture infection involved a lag/adaptation phase, followed by continued growth to 20 days postinfection. Moreover, R. felis organisms were observed in the S2 cells using transmission electron microscopy and a polyclonal antibody against spotted fever rickettsiae. The ability to use D. melanogaster S2 cells for growing rickettsial agents is a useful tool owing to the ease of manipulation of the S2 cultures and the wide-ranging possibility of Drosophila resources available for future studies.
Related JoVE Video
Characterization Based on the 56-Kda Type-Specific Antigen Gene of Orientia tsutsugamushi Genotypes Isolated from Leptotrombidium Mites and the Rodent Host Post-Infection.
Am. J. Trop. Med. Hyg.
PUBLISHED: 12-02-2013
Show Abstract
Hide Abstract
Characterization of the 56-kDa type-specific antigen (TSA) genes of Orientia tsutsugamushi (OT) from three naturally infected, laboratory-reared mite colonies comprising three species (Leptotrombidium deliense [Ld], Leptotrombidium imphalum [Li], and Leptotrombidium chiangraiensis [Lc]) has revealed the presence of single and coexisting OT genotypes found in individual chiggers. The Karp genotype was found in all of the chiggers examined, whereas Gilliam and UT302 genotypes were only observed in combination with the Karp genotype. From analysis of these OT genotypes after transmission from chiggers to mice it was determined that with the Lc and Li mites, the OT genotype composition in the rodent spleens post-infection had not changed and therefore resembled that observed in the feeding chiggers. However, only the Karp genotype was found in rodents after feeding by Ld chiggers carrying Karp and Gilliam genotypes. The current findings reveal a complex association among the host, pathogen, and vector.
Related JoVE Video
Molecular typing of "Candidatus Bartonella ancashi," a new human pathogen causing verruga peruana.
J. Clin. Microbiol.
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
A recently described clinical isolate, "Candidatus Bartonella ancashi," was obtained from a blood sample of a patient presenting with verruga peruana in the Ancash region of Peru. This sample and a second isolate obtained 60 days later from the same patient were molecularly typed using multilocus sequence typing (MLST) and multispacer sequence typing (MST). The isolates were 100% indistinguishable from each other but phylogenetically distant from Bartonella bacilliformis and considerably divergent from other known Bartonella species, confirming their novelty.
Related JoVE Video
Genome Sequencing of Four Strains of Rickettsia prowazekii, the Causative Agent of Epidemic Typhus, Including One Flying Squirrel Isolate.
Genome Announc
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
Rickettsia prowazekii is a notable intracellular pathogen, the agent of epidemic typhus, and a potential biothreat agent. We present here whole-genome sequence data for four strains of R. prowazekii, including one from a flying squirrel.
Related JoVE Video
Novel Bartonella agent as cause of verruga peruana.
Emerging Infect. Dis.
PUBLISHED: 06-15-2013
Show Abstract
Hide Abstract
While studying chronic verruga peruana infections in Peru from 2003, we isolated a novel Bartonella agent, which we propose be named Candidatus Bartonella ancashi. This case reveals the inherent weakness of relying solely on clinical syndromes for diagnosis and underscores the need for a new diagnostic paradigm in developing settings.
Related JoVE Video
A prospective evaluation of real-time PCR assays for the detection of Orientia tsutsugamushi and Rickettsia spp. for early diagnosis of rickettsial infections during the acute phase of undifferentiated febrile illness.
Am. J. Trop. Med. Hyg.
PUBLISHED: 06-03-2013
Show Abstract
Hide Abstract
One hundred and eighty febrile patients were analyzed in a prospective evaluation of Orientia tsutsugamushi and Rickettsia spp. real-time polymerase chain reaction (PCR) assays for early diagnosis of rickettsial infections. By paired serology, 3.9% (7 of 180) and 6.1% (11 of 180) of patients were confirmed to have acute scrub or murine typhus, respectively. The PCR assays for the detection of O. tsutsugamushi and Rickettsia spp. had high specificity (99.4% [95% confidence interval (CI): 96.8-100] and 100% [95% CI: 97.8-100], respectively). The PCR results were also compared with immunoglobulin M (IgM) immunofluorescence assay (IFA) on acute sera. For O. tsutsugamushi, PCR sensitivity was twice that of acute specimen IgM IFA (28.6% versus 14.3%; McNemars P = 0.3). For Rickettsia spp., PCR was four times as sensitive as acute specimen IgM IFA (36.4% versus 9.1%; P = 0.08), although this was not statistically significant. Whole blood and buffy coat, but not serum, were acceptable specimens for these PCRs. Further evaluation of these assays in a larger prospective study is warranted.
Related JoVE Video
Molecular detection of rickettsia felis and candidatus rickettsia asemboensis in fleas from human habitats, Asembo, Kenya.
Vector Borne Zoonotic Dis.
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
The flea-borne rickettsioses murine typhus (Rickettsia typhi) and flea-borne spotted fever (FBSF) (Rickettsia felis) are febrile diseases distributed among humans worldwide. Murine typhus has been known to be endemic to Kenya since the 1950s, but FBSF was only recently documented in northeastern (2010) and western (2012) Kenya. To characterize the potential exposure of humans in Kenya to flea-borne rickettsioses, a total of 330 fleas (134 pools) including 5 species (Xenopsylla cheopis, Ctenocephalides felis, Ctenocephalides canis, Pulex irritans, and Echidnophaga gallinacea) were collected from domestic and peridomestic animals and from human dwellings within Asembo, western Kenya. DNA was extracted from the 134 pooled flea samples and 89 (66.4%) pools tested positively for rickettsial DNA by 2 genus-specific quantitative real-time PCR (qPCR) assays based upon the citrate synthase (gltA) and 17-kD antigen genes and the Rfelis qPCR assay. Sequences from the 17-kD antigen gene, the outer membrane protein (omp)B, and 2 R. felis plasmid genes (pRF and pRFd) of 12 selected rickettsia-positive samples revealed a unique Rickettsia sp. (n=11) and R. felis (n=1). Depiction of the new rickettsia by multilocus sequence typing (MLST) targeting the 16S rRNA (rrs), 17-kD antigen gene, gltA, ompA, ompB, and surface cell antigen 4 (sca4), shows that it is most closely related to R. felis but genetically dissimilar enough to be considered a separate species provisionally named Candidatus Rickettsia asemboensis. Subsequently, 81 of the 134 (60.4%) flea pools tested positively for Candidatus Rickettsia asemboensis by a newly developed agent-specific qPCR assay, Rasemb. R. felis was identified in 9 of the 134 (6.7%) flea pools, and R. typhi the causative agent of murine typhus was not detected in any of 78 rickettsia-positive pools assessed using a species-specific qPCR assay, Rtyph. Two pools were found to contain both R. felis and Candidatus Rickettsia asemboensis DNA and 1 pool contained an agent, which is potentially new.
Related JoVE Video
Detecting Rickettsia parkeri infection from eschar swab specimens.
Emerging Infect. Dis.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
The typical clinical presentation of several spotted fever group Rickettsia infections includes eschars. Clinical diagnosis of the condition is usually made by analysis of blood samples. We describe a more sensitive, noninvasive means of obtaining a sample for diagnosis by using an eschar swab specimen from patients infected with Rickettsia parkeri.
Related JoVE Video
Scrub typhus outbreak, northern Thailand, 2006-2007.
Emerging Infect. Dis.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
During a scrub typhus outbreak investigation in Thailand, 4 isolates of O. tsutsugamushi were obtained and established in culture. Phylogenetic analysis based on the 56-kDa type-specific antigen gene demonstrated that the isolates fell into 4 genetic clusters, 3 of which had been previously reported and 1 that represents a new genotype.
Related JoVE Video
Detection of Rickettsia monacensis from Ixodes nipponensis collected from rodents in Gyeonggi and Gangwon Provinces, Republic of Korea.
Exp. Appl. Acarol.
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
A total of 1,305 ticks were collected from wild rodents captured monthly, except July and August, during 2008 at three US-ROK operated military training sites and three US military installations in Gyeonggi and Gangwon Provinces, the Republic of Korea (ROK). Ixodes nipponensis was the most frequently collected tick (n = 1,299, 99.5 %), followed by Ixodes pomerantzevi (n = 6, 0.5 %). The ticks were pooled (1-15/sample) and tested by nested polymerase chain reaction (nPCR) for spotted fever group (SFG) rickettsiae with primer sets targeting the outer membrane protein B (ompB), citrate synthase (gltA), and 17-kDa antigen gene loci. A total of 115/197 (58.4 %) pools were positive by nPCR for the outer membrane protein ompB. Nucleotide sequence analysis of 105/115 (91.3 %) ompB targeted nPCR positive products showed a high degree of similarity to Rickettsia monacensis (99.3-100 %, n = 87) and R. japonica (99.5-100 %, n = 18). From the 87 positive samples demonstrating a high degree of similarity to R. monacensis, 15 were selected and analyzed by nPCR for gltA and the 17-kDa genes. A total of 12/15 pooled samples were positive for by nPCR for gltA, with amplicons demonstrating a high degree of similarity to R. monacensis (99.3-99.7 %). A total of 13/15 pooled samples were positive by nPCR for the 17-kDa gene, with amplicons demonstrating a high degree of similarity to R. monacensis (99.4-100 %). These findings demonstrate that R. monacensis is distributed throughout Gyeonggi and Gangwon Provinces in the ROK. Furthermore, data suggest a relative high prevalence of R. monacensis in the tick, I. nipponensis.
Related JoVE Video
Diversity of the 47-kD HtrA nucleic acid and translated amino acid sequences from 17 recent human isolates of Orientia.
Vector Borne Zoonotic Dis.
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
Orientia tsutsugamushi, the etiologic agent of potentially fatal scrub typhus, is characterized by a high antigenic diversity, which complicates the development of a broadly protective vaccine. Efficacy studies in murine and nonhuman primate models demonstrated the DNA vaccine candidate pKarp47, based upon the O. tsutsugamushi Karp 47-kD HtrA protein gene, to be a successful immunoprophylactic against scrub typhus. To characterize 47-kD HtrA protein diversity among human isolates of Orientia, we sequenced the full open reading frame (ORF) of the 47-kD HtrA gene and analyzed the translated amino acid sequences of 17 patient isolates from Thailand (n=13), Laos (n=2), Australia (n=1), and the United Arab Emirates (UAE) (n=1) and 9 reference strains: Karp (New Guinea), Kato (Japan), Ikeda (Japan), Gilliam (Burma), Boryong (Korea), TA763, TH1811 and TH1817 (Thailand), and MAK243 (China). The percentage identity (similarity) of translated amino acid sequences between 16 new isolates and 9 reference strains of O. tsutsugamushi ranged from 96.4% to 100% (97.4% to 100%). However, inclusion of the recently identified Orientia chuto sp. nov. reduced identity (similarity) values to 82.2% to 83.3% (90.4% to 91.4%). These results demonstrate the diversity of Orientia 47-kD HtrA among isolates encountered by humans and therefore provide support for the necessity of developing a broadly protective scrub typhus vaccine that takes this diversity into account.
Related JoVE Video
Spotted fever group rickettsia closely related to Rickettsia monacensis isolated from ticks in South Jeolla province, Korea.
Microbiol. Immunol.
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
Rickettsia monacensis, a spotted fever group rickettsia, was isolated from Ixodes nipponensis ticks collected from live-captured small mammals in South Jeolla province, Korea in 2006. Homogenates of tick tissues were inoculated into L929 and Vero cell monolayers using shell vial assays. After several passages, Giemsa staining revealed rickettsia-like organisms in the inoculated Vero cells, but not the L929 cells. Sequencing analysis revealed that the ompA-small part (25-614?bp region), ompA-large part (2849-4455?bp region), nearly full-length ompB (58-4889?bp region) and gltA (196-1236?bp region) of the isolates had similarities of 100%, 99.8%, 99.3% and 99.5%, respectively, to those of R. monacensis. Furthermore, phylogenetic analysis showed that the isolate was grouped into the cluster in the same way as R. monacensis in the trees of all genes examined. These results strongly suggest that the isolate is closely related to R. monacensis. As far as is known, this is the first report of isolation of R. monacensis from ticks in Korea.
Related JoVE Video
Detection of rickettsia parkeri from within Piura, Peru, and the first reported presence of Candidatus rickettsia andeanae in the tick Rhipicephalus sanguineus.
Vector Borne Zoonotic Dis.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Domestic farm animals (n=145) were sampled for the presence of ectoparasites in northwestern Peru during March, 2008. Ninety domestic animals (62%) were positive for the presence of an ectoparasite(s) and produced a total collection of the following: 728 ticks [Amblyomma maculatum, Anocentor nitens, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus, and Otobius megnini], 12 lice (Haematopinus suis), and 3 fleas (Ctenocephalides felis). A Rickettsia genus-specific qPCR assay was performed on nucleic acid preparations of the collected ectoparasites that resulted in 5% (37/743, 35 ticks and 2 fleas) of the ectoparasites positive for the presence of Rickettsia. DNA from the positive individual ticks was tested with 2 other qPCR assays for the presence of the ompB gene in Candidatus Rickettsia andeanae or Rickettsia parkeri. Candidatus R. andeanae was found in 25 A. maculatum ticks and in two Rh. sanguineus ticks, whereas R. parkeri was detected in 6 A. maculatum ticks. Two A. maculatum were co-infected with both Candidatus R. andeanae and R. parkeri. Rickettsia felis was detected in 2 fleas, Ctenocephalides felis, by multilocus sequence typing of the 17-kD antigen and ompA genes. These findings expand the geographic range of R. parkeri to include Peru as well as expand the natural arthropod vector of Candidatus R. andeanae to include Rhipicephalus sanguineus.
Related JoVE Video
Zoonotic surveillance for rickettsiae in domestic animals in Kenya.
Vector Borne Zoonotic Dis.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Abstract Rickettsiae are obligate intracellular bacteria that cause zoonotic and human diseases. Arthropod vectors, such as fleas, mites, ticks, and lice, transmit rickettsiae to vertebrates during blood meals. In humans, the disease can be life threatening. This study was conducted amidst rising reports of rickettsioses among travelers to Kenya. Ticks and whole blood were collected from domestic animals presented for slaughter at major slaughterhouses in Nairobi and Mombasa that receive animals from nearly all counties in the country. Blood samples and ticks were collected from 1019 cattle, 379 goats, and 299 sheep and were screened for rickettsiae by a quantitative PCR (qPCR) assay (Rick17b) using primers and probe that target the genus-specific 17-kD gene (htrA). The ticks were identified using standard taxonomic keys. All Rick17b-positive tick DNA samples were amplified and sequenced with primers sets that target rickettsial outer membrane protein genes (ompA and ompB) and the citrate-synthase encoding gene (gltA). Using the Rick17b qPCR, rickettsial infections in domestic animals were found in 25/32 counties sampled (78.1% prevalence). Infection rates were comparable in cattle (16.3%) and sheep (15.1%) but were lower in goats (7.1%). Of the 596 ticks collected, 139 had rickettsiae (23.3%), and the detection rates were highest in Amblyomma (62.3%; n=104), then Rhipicephalus (45.5%; n=120), Hyalomma (35.9%; n=28), and Boophilus (34.9%; n=30). Following sequencing, 104 out of the 139 Rick17b-positive tick DNA had good reverse and forward sequences for the 3 target genes. On querying GenBank with the generated consensus sequences, homologies of 92-100% for the following spotted fever group (SFG) rickettsiae were identified: Rickettsia africae (93.%, n=97), Rickettsia aeschlimannii (1.9%, n=2), Rickettsia mongolotimonae (0.96%, n=1), Rickettsia conorii subsp. israelensis (0.96%, n=1), Candidatus Rickettsia kulagini (0.96% n=1), and Rickettsia spp. (1.9% n=2). In conclusion, molecular methods were used in this study to detect and identify rickettsial infections in domestic animals and ticks throughout Kenya.
Related JoVE Video
Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya.
Am. J. Trop. Med. Hyg.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
We conducted serological surveys for Coxiella burnetii in archived sera from patients that visited a rural clinic in western Kenya from 2007 to 2008 and in cattle, sheep, and goats from the same area in 2009. We also conducted serological and polymerase chain reaction-based surveillance for the pathogen in 2009-2010, in human patients with acute lower respiratory illness, in ruminants following parturition, and in ticks collected from ruminants and domestic dogs. Antibodies against C. burnetii were detected in 30.9% (N = 246) of archived patient sera and in 28.3% (N = 463) of cattle, 32.0% (N = 378) of goats, and 18.2% (N = 159) of sheep surveyed. Four of 135 (3%) patients with acute lower respiratory illness showed seroconversion to C. burnetii. The pathogen was detected by polymerase chain reaction in specimens collected from three of six small ruminants that gave birth within the preceding 24 hours, and in five of 10 pools (50%) of Haemaphysalis leachi ticks collected from domestic dogs.
Related JoVE Video
An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi.
PLoS ONE
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Scrub typhus is an important endemic disease of the Asia-Pacific region caused by Orientia tsutsugamushi. To develop an effective vaccine to prevent scrub typhus infection, a better understanding of the initial host-pathogen interaction is needed. The objective of this study was to investigate early bacterial dissemination in a CD-1 Swiss outbred mouse model after intradermal injection of O. tsutsugamushi. Three human pathogenic strains of O. tsutsugamushi (Karp, Gilliam, and Woods) were chosen to investigate the early infection characteristics associated with bacterial virulence. Tissue biopsies of the intradermal injection site and draining lymph nodes were examined using histology and immunohistochemistry to characterize bacterial dissemination, and correlated with quantitative real-time PCR for O. tsutsugamushi in blood and tissue from major organs. Soluble adhesion molecules were measured to examine cellular activation in response to infection. No eschar formation was seen at the inoculation site and no clinical disease developed within the 7 day period of observation. However, O. tsutsugamushi was localized at the injection site and in the draining lymph nodes by day 7 post inoculation. Evidence of leukocyte and endothelial activation was present by day 7 with significantly raised levels of sL-selectin, sICAM-1 and sVCAM-1. Infection with the Karp strain was associated with earlier and higher bacterial loads and more extensive dissemination in various tissues than the less pathogenic Gilliam and Woods strains. The bacterial loads of O. tsutsugamushi were highest in the lungs and spleens of mice inoculated with Karp and Gilliam, but not Woods strains. Strains of higher virulence resulted in more rapid systemic infection and dissemination in this model. The CD-1 mouse intradermal inoculation model demonstrates features relevant to early scrub typhus infection in humans, including the development of regional lymphadenopathy, leukocyte activation and distant organ dissemination after low-dose intradermal injection with O. tsutsugamushi.
Related JoVE Video
Detection of Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum Gulf Coast ticks collected from humans in the United States.
Vector Borne Zoonotic Dis.
PUBLISHED: 10-24-2011
Show Abstract
Hide Abstract
Rickettsia parkeri, a spotted fever group (SFG) rickettsia recently found to be pathogenic to humans, causes an eschar-associated febrile illness. The R. parkeri rickettsiosis, Tidewater spotted fever, has been misdiagnosed as Rocky Mountain spotted fever due to serologic cross reactivity and the lack of specific diagnostic methods. Candidatus Rickettsia andeanae, also a SFG rickettsia, is a recently described agent of unknown pathogenicity originally identified in ticks collected from domestic animals during a fever outbreak investigation in northern Peru. Among 37 Amblyomma maculatum (collected from humans (n=35) and questing (n=2)) obtained from the southern United States during 2000-2009, nine and four A. maculatum nucleic acid preparations were found positive for R. parkeri and Candidatus R. andeanae, respectively, by newly developed genus- and species-specific quantitative real-time polymerase chain reaction assays. In addition Rickettsia felis was found in two A. maculatum nucleic acid preparations.
Related JoVE Video
Endemic scrub typhus-like illness, Chile.
Emerging Infect. Dis.
PUBLISHED: 09-06-2011
Show Abstract
Hide Abstract
We report a case of scrub typhus in a 54-year-old man who was bitten by several terrestrial leeches during a trip to Chiloé Island in southern Chile in 2006. A molecular sample, identified as related to Orientia tsutsugamushi based on the sequence of the16S rRNA gene, was obtained from a biopsy specimen of the eschar on the patients leg. Serologic analysis showed immunoglobulin G conversion against O. tsutsugamushi whole cell antigen. This case and its associated molecular analyses suggest that an Orientia-like agent is present in the Western Hemisphere that can produce scrub typhus-like illness. The molecular analysis suggests that the infectious agent is closely related, although not identical, to members of the Orientia sp. from Asia.
Related JoVE Video
In vitro propagation of Candidatus Rickettsia andeanae isolated from Amblyomma maculatum.
FEMS Immunol. Med. Microbiol.
PUBLISHED: 07-27-2011
Show Abstract
Hide Abstract
Candidatus Rickettsia andeanae was identified during an investigation of a febrile outbreak in northwestern Peru (2002). DNA sequencing from two ticks (Amblyomma maculatum, Ixodes boliviensis) collected during the investigation revealed a novel Rickettsia agent with similarity to the spotted fever group rickettsiae. Since then, Candidatus R. andeanae has been detected in A. maculatum ticks collected in the southeastern and southcentral United States, Argentina, and Peru. To date, Candidatus R. andeanae has not been successfully cultivated in the laboratory. We present evidence for the continuous cultivation in three cell lines of Candidatus R. andeanae isolated from an A. maculatum tick (Portsmouth, Virginia).
Related JoVE Video
Detection of Rickettsia felis and Rickettsia typhi and seasonal prevalence of fleas collected from small mammals at Gyeonggi Province in the Republic of Korea.
Vector Borne Zoonotic Dis.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Fleas were collected from live-captured small mammals to identify flea-borne pathogens, host associations, and seasonal prevalence of flea species, as part of the 65th Medical Brigade rodent-borne disease surveillance program at 20 military installations and training sites, Gyeonggi Province, Republic of Korea, 2005-2007. A total of 1251 fleas were recovered from 2833 small mammals. Apodemus agrarius, the striped field mouse, accounted for 93.1% (2,637/2,833) of all small mammals captured, followed by Crocidura lasiura (3.1%), Mus musculus (1.3%), Microtus fortis (0.7%), Myodes regulus (0.7%), Micromys minutus (0.5%), Rattus norvegicus (0.4%), Tscherskia triton (0.1%), Apodemus peninsulae (< 0.1%), Rattus rattus (< 0.1%), and Mogera robusta (< 0.1%). A total of 6/11 species of mammals captured were infested with fleas with infestation rates ranging from a high of 26.3% (A. agrarius and M. regulus) to a low of 5.3% (M. fortis). Flea indices among infested mammals were highest for R. norvegicus (2.50), followed by C. lasiura (2.20), A. agrarius (1.71), M. regulus (1.20), M. musculus (1.0), and M. fortis (1.0). The predominant flea species collected were Stenoponia sidimi (56.5%), followed by Ctenophthalmus congeneroides (38.3%) and Rhadinopsylla insolita (3.9%). The minimum field infection rates [number of positive pools/total number of fleas (600)] for Rickettsia typhi and for Rickettsia felis were 1.7% and 1.0%, respectively.
Related JoVE Video
Genotype diversity and distribution of Orientia tsutsugamushi causing scrub typhus in Thailand.
J. Clin. Microbiol.
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
Scrub typhus, caused by antigenically disparate isolates of Orientia tsutsugamushi, is a widely distributed mite-borne human disease in the Asia Pacific region. Information regarding the heterogeneity of the immunodominant 56-kDa type-specific antigen (TSA) gene is crucial for the design and evaluation of scrub typhus-specific diagnostic assays and vaccines. Using indirect immunofluorescence assays (IFA) and PCR assays, O. tsutsugamushi was detected samples from rodents and patients with fever of unknown origin obtained from six provinces of Thailand during 2004 to 2007. Sequences were determined for a fragment of the 56-kDa TSA gene, and the relationship between these sequences and those previously determined were assessed. The phylogenetic analyses of partial 56-kDa TSA gene sequences demonstrated wide diversity and distribution of O. tsutsugamushi genotypes in Thailand. Furthermore, the genetic diversity grouped the scrub typhus agents into two commonly and five infrequently found genotypes within six provinces of Thailand. The two most commonly found genotypes of O. tsutsugamushi described in this study do not associate with the prototype strains that are widely used for the design and evaluation of diagnostic assays and vaccine candidates. Thus, these new genotypes should be considered for future scrub typhus assay and vaccine development.
Related JoVE Video
Rickettsia parkeri in gulf coast ticks, southeastern Virginia, USA.
Emerging Infect. Dis.
PUBLISHED: 05-03-2011
Show Abstract
Hide Abstract
We report evidence that Amblyomma maculatum tick populations are well established in southeastern Virginia. We found that 43.1% of the adult Gulf Coast ticks collected in the summer of 2010 carried Rickettsia parkeri, suggesting that persons living in or visiting southeastern Virginia are at risk for infection with this pathogen.
Related JoVE Video
Isolation and characterization of Orientia tsutsugamushi from rodents captured following a scrub typhus outbreak at a military training base, Bothong district, Chonburi province, central Thailand.
Am. J. Trop. Med. Hyg.
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
Orientia tsutsugamushi, an obligate intracellular Gram-negative bacterium, is the causative agent of scrub typhus, a vector-borne disease transmitted by infected chiggers (trombiculid mite larvae). In 2002, an outbreak of scrub typhus occurred among Royal Thai Army troops during the annual field training at a military base in Bothong district, Chonburi province, central Thailand. This report describes the outbreak investigation including its transmission cycle. Results showed that 33.9% of 174 trained troops had scrub typhus-like signs and symptoms and 9.8% of those were positive for O. tsutsugamushi-specific antibodies by indirect fluorescence antibody assay. One hundred thirty-five rodents were captured from this training area, 43% of them had antibodies against O. tsutsugamushi. Six new O. tsutsugamushi isolates were obtained from captured rodent tissues and successfully established in cell culture. Phylogenetic studies showed that these six isolates were either unique or related to a native genotype of previously described isolates from Thailand.
Related JoVE Video
Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments.
BMC Public Health
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations.
Related JoVE Video
The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks.
BMC Public Health
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
The Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System Operations (AFHSC-GEIS) initiated a coordinated, multidisciplinary program to link data sets and information derived from eco-climatic remote sensing activities, ecologic niche modeling, arthropod vector, animal disease-host/reservoir, and human disease surveillance for febrile illnesses, into a predictive surveillance program that generates advisories and alerts on emerging infectious disease outbreaks. The programs ultimate goal is pro-active public health practice through pre-event preparedness, prevention and control, and response decision-making and prioritization. This multidisciplinary program is rooted in over 10 years experience in predictive surveillance for Rift Valley fever outbreaks in Eastern Africa. The AFHSC-GEIS Rift Valley fever project is based on the identification and use of disease-emergence critical detection points as reliable signals for increased outbreak risk. The AFHSC-GEIS predictive surveillance program has formalized the Rift Valley fever project into a structured template for extending predictive surveillance capability to other Department of Defense (DoD)-priority vector- and water-borne, and zoonotic diseases and geographic areas. These include leishmaniasis, malaria, and Crimea-Congo and other viral hemorrhagic fevers in Central Asia and Africa, dengue fever in Asia and the Americas, Japanese encephalitis (JE) and chikungunya fever in Asia, and rickettsial and other tick-borne infections in the U.S., Africa and Asia.
Related JoVE Video
Rickettsial infections of fleas collected from small mammals on four islands in Indonesia.
J. Med. Entomol.
PUBLISHED: 12-24-2010
Show Abstract
Hide Abstract
Ectoparasites were sampled from small mammals collected in West Java, West Sumatra, North Sulawesi, and East Kalimantan, Indonesia, in 2007-2008 and were screened for evidence of infection from bacteria in the Rickettsaceae family. During eight trap nights at eight sites, 208 fleas were collected from 96 of 507 small mammals trapped from four orders (379 Rodentia; 123 Soricomorpha; two Carnivora; three Scandentia). Two species of fleas were collected: Xenopsylla cheopis (n = 204) and Nosopsyllus spp. (n = 4). Among the 208 fleas collected, 171 X. cheopis were removed from rats (Rattus spp.) and 33 X. cheopis from shrews (Suncus murinus). X. cheopis were pooled and tested for DNA from rickettsial agents Rickettsia typhi, Rickettsia felis, and spotted fever group rickettsiae. R. typhi, the agent of murine typhus, was detected in X. cheopis collected from small mammals in West Java and East Kalimantan. R. felis was detected in X. cheopis collected from small mammals in Manado, North Sulawesi. R. felis and spotted fever group rickettsiae were detected in a pool of X. cheopis collected from an animal in East Kalimantan. Sixteen percent of the X. cheopis pools were found positive for Rickettsia spp.; four (10.8%) R. typhi, one (2.7%) R. felis, and one (2.7%) codetection of R. felis and a spotted fever group rickettsia. These data suggest that rickettsial infections remain a threat to human health across Indonesia.
Related JoVE Video
Infrequency of Rickettsia rickettsii in Dermacentor variabilis removed from humans, with comments on the role of other human-biting ticks associated with spotted fever group Rickettsiae in the United States.
Vector Borne Zoonotic Dis.
PUBLISHED: 12-13-2010
Show Abstract
Hide Abstract
From 1997 to 2009, the Tick-Borne Disease Laboratory of the U.S. Army Public Health Command (USAPHC) (formerly the U.S. Army Center for Health Promotion and Preventive Medicine) screened 5286 Dermacentor variabilis ticks removed from Department of Defense (DOD) personnel, their dependents, and DOD civilian personnel for spotted fever group rickettsiae using polymerase chain reaction and restriction fragment length polymorphism analysis. Rickettsia montanensis (171/5286 = 3.2%) and Rickettsia amblyommii (7/5286 = 0.1%) were detected in a small number of samples, but no ticks were found positive for Rickettsia rickettsii, the agent of Rocky Mountain spotted fever (RMSF) until May 2009, when it was detected in one D. variabilis male removed from a child in Maryland. This result was confirmed by nucleotide sequence analysis of the rickettsial isolate and of the positive control used in the polymerase chain reaction, which was different from the isolate. Lethal effects of rickettsiostatic proteins of D. variabilis on R. rickettsii and lethal effects of R. rickettsii infection on tick hosts may account for this extremely low prevalence. Recent reports of R. rickettsii in species Rhipicephalus sanguineus and Amblyomma americanum ticks suggest their involvement in transmission of RMSF, and other pathogenic rickettsiae have been detected in Amblyomma maculatum. The areas of the U.S. endemic for RMSF are also those where D. variabilis exist in sympatry with populations of A. americanum and A. maculatum. Interactions among the sympatric species of ticks may be involved in the development of a focus of RMSF transmission. On the other hand, the overlap of foci of RMSF cases and areas of A. americanum and A. maculatum populations might indicate the misdiagnosis as RMSF of diseases actually caused by other rickettsiae vectored by these ticks. Further studies on tick vectors are needed to elucidate the etiology of RMSF.
Related JoVE Video
Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai.
J. Clin. Microbiol.
PUBLISHED: 10-06-2010
Show Abstract
Hide Abstract
In July 2006, an Australian tourist returning from Dubai, in the United Arab Emirates (UAE), developed acute scrub typhus. Her signs and symptoms included fever, myalgia, headache, rash, and eschar. Orientia tsutsugamushi serology demonstrated a 4-fold rise in antibody titers in paired serum collections (1:512 to 1:8,192), with the sera reacting strongest against the Gilliam strain antigen. An Orientia species was isolated by the in vitro culture of the patients acute blood taken prior to antibiotic treatment. The gene sequencing of the 16S rRNA gene (rrs), partial 56-kDa gene, and the full open reading frame 47-kDa gene was performed, and comparisons of this new Orientia sp. isolate to previously characterized strains demonstrated significant sequence diversity. The closest homology to the rrs sequence of the new Orientia sp. isolate was with three strains of O. tsutsugamushi (Ikeda, Kato, and Karp), with a nucleotide sequence similarity of 98.5%. The closest homology to the 47-kDa gene sequence was with O. tsutsugamushi strain Gilliam, with a nucleotide similarity of 82.3%, while the closest homology to the 56-kDa gene sequence was with O. tsutsugamushi strain TA686, with a nucleotide similarity of 53.1%. The molecular divergence and geographically unique origin lead us to believe that this organism should be considered a novel species. Therefore, we have proposed the name "Orientia chuto," and the prototype strain of this species is strain Dubai, named after the location in which the patient was infected.
Related JoVE Video
Human Infection with Rickettsia felis, Kenya.
Emerging Infect. Dis.
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
To determine the cause of acute febrile illnesses other than malaria in the North Eastern Province, Kenya, we investigated rickettsial infection among patients from Garissa Provincial Hospital for 23 months during 2006-2008. Nucleic acid preparations of serum from 6 (3.7%) of 163 patients were positive for rickettsial DNA as determined by a genus-specific quantitative real-time PCR and were subsequently confirmed by molecular sequencing to be positive for Rickettsia felis. The 6 febrile patients symptoms included headache; nausea; and muscle, back, and joint pain. None of the patients had a skin rash.
Related JoVE Video
Bacterial pathogens in ixodid ticks from a Piedmont County in North Carolina: prevalence of rickettsial organisms.
Vector Borne Zoonotic Dis.
PUBLISHED: 05-10-2010
Show Abstract
Hide Abstract
In North Carolina, reported human cases of tick-borne illness, specifically Rocky Mountain spotted fever, have escalated over the past decade. To determine the relative abundance of vectors and to estimate the risk of acquiring a tick-borne illness in peri-residential landscapes, ticks were collected in Chatham County, a typical Piedmont county and, samples of the ticks were tested for infection with selected bacterial pathogens using real-time quantitative polymerase chain reaction assays. Ticks (n?=?3746) were collected by flagging vegetation at 26 sites from April to July 2006. The predominant questing tick was Amblyomma americanum (98.5%) with significantly fewer Dermacentor variabilis (1.0%) and Ixodes scapularis (0.5%) collected. Spotted fever group (SFG) rickettsiae were detected in 68.2% of 1590 A. americanum with 56.4% of the molecular isolates identified as Rickettsia amblyommii, an informally named member of the SFG rickettsiae. Comparatively, smaller numbers of A. americanum contained Ehrlichia chaffeensis (1.8%) and Borrelia lonestari (0.4%). Of 15 I. scapularis nymphs tested, 6 (40%) were positive for Borrelia burgdorferi sensu lato. Seven (19.4%) of 36 adult D. variabilis tested positive for Rickettsia montanensis, 4 (11.1%) were positive for R. amblyommii, and 5 (13.9%) were infected with unidentified species of SFG rickettsiae. The tick population in Chatham County contains a diverse array of microbes, some of which are known or potential pathogens. Highest attack rates would be expected from A. americanum ticks, and highest potential risk of infection with a tick-transmitted agent would be to rickettsial organisms, particularly R. amblyommii. Accordingly, longitudinal eco-epidemiology investigations are needed to determine the public health importance of A. americanum infected with rickettsial organisms.
Related JoVE Video
Contrasting spatial distribution and risk factors for past infection with scrub typhus and murine typhus in Vientiane City, Lao PDR.
PLoS Negl Trop Dis
PUBLISHED: 04-26-2010
Show Abstract
Hide Abstract
The aetiological diagnostic of fevers in Laos remains difficult due to limited laboratory diagnostic facilities. However, it has recently become apparent that both scrub and murine typhus are common causes of previous undiagnosed fever. Epidemiological data suggests that scrub typhus would be more common in rural areas and murine typhus in urban areas, but there is very little recent information on factors involved in scrub and murine typhus transmission, especially where they are sympatric - as is the case in Vientiane, the capital of the Lao PDR.
Related JoVE Video
Serosurveillance of scrub typhus in small mammals collected from military training sites near the DMZ, Northern Gyeonggi-do, Korea, and analysis of the relative abundance of chiggers from mammals examined.
Korean J. Parasitol.
PUBLISHED: 04-18-2010
Show Abstract
Hide Abstract
Comprehensive quarterly serosurveillance on scrub typhus in small mammals collected from military training sites located near the Demilitarized Zone (DMZ), northern Gyeonggi-do (Province), ROK was conducted to determine the potential rodent-borne and associated ectoparasite disease risks to military personnel. A total of 1,196 rodents and insectivores representing 8 species, Apodemus agrarius (87.3%, n = 1,044), Mus musculus (5.4%, n = 65), Crocidura lasiura (3.3%, n = 40), Microtus fortis (2.6%, n = 31), Micromys minutus (0.3%, n = 4), Tscherskia triton (0.3%, n = 4), Rattus norvegicus (0.3%, n = 4), and Myodes regulus (0.3%, n = 4) were assayed for the presence of antibodies to Orientia tsutsugamushi. O. tsutsugamushi antibodies were detected in 6 of 8 species and seroprevalence determined; A. agrarius (45.6%), M. musculus (23.1%), M. fortis (48.4%), M. minutus (50.0%), T. triton (50.0%), and R. norvegicus (25.0%). A total of 31,184 chigger mites collected from 508 rodents and insectivores were slide-mounted and 10 species belonging to 4 genera were identified. Leptotrombidium pallidum (53.4%) was the most frequently collected, followed by L. palpale (15.7%), Neotrombicula tamiyai (14.3%), L. orientale (10.7%), L. zetum (3.1%), Walchia fragilis (2.1%), and L. gemiticulum (0.8%), while the remaining 3 species, L. subintermedium, N. gardellai, and Euschoengastia koreaensis were rarely observed (prevalence < 10%). In contrast to previous surveys, higher chigger indices of the primary scrub typhus vectors, L. pallidum (165.4), L. orientale (45.0), and L. palpale (21.4), were observed during the spring season.
Related JoVE Video
Finishing genomes with limited resources: lessons from an ensemble of microbial genomes.
BMC Genomics
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
While new sequencing technologies have ushered in an era where microbial genomes can be easily sequenced, the goal of routinely producing high-quality draft and finished genomes in a cost-effective fashion has still remained elusive. Due to shorter read lengths and limitations in library construction protocols, shotgun sequencing and assembly based on these technologies often results in fragmented assemblies. Correspondingly, while draft assemblies can be obtained in days, finishing can take many months and hence the time and effort can only be justified for high-priority genomes and in large sequencing centers. In this work, we revisit this issue in light of our own experience in producing finished and nearly-finished genomes for a range of microbial species in a small-lab setting. These genomes were finished with surprisingly little investments in terms of time, computational effort and lab work, suggesting that the increased access to sequencing might also eventually lead to a greater proportion of finished genomes from small labs and genomics cores.
Related JoVE Video
Serological surveillance of scrub typhus, murine typhus, and leptospirosis in small mammals captured at Twin Bridges Training Area, Gyeonggi Province, Republic of Korea, 2005-2007.
Mil Med
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
Soldiers from the Republic of Korea and the United States conduct armistice military operations at Twin Bridges Training Area (TBTA) located near the demilitarized zone (DMZ) and are exposed to zoonotic disease pathogens that small mammals and their potentially disease-carrying ectoparasites transmit. TBTA is a 36 km2 rural training site with small villages and various forms of agriculture along its boundary. At TBTA, rodents, insectivores, and their ectoparasites are commonly found in association with unmanaged habitats of various densities of tall grasses, herbaceous plants, shrubs, briars, and crawling vegetation. Rodents and insectivores were collected during the winter (November-December 2005 and December 2006) and early spring (March 2007), and serologically tested for the presence of scrub typhus, murine typhus, and leptospirosis antibodies. Of the six species of small mammals collected, Apodemus agrarius, the common striped field mouse and known reservoir of scrub typhus, was the most frequently collected (96.1%), followed by Crocidura lasiura (2.5%), Micromys minutus (0.5%), Myodes regulus (0.5%), Mus musculus (0.3%), and Rattus rattus (0.1%). A. agrarius (56.1%), M. musculus (66.7%), M. minutus (25%), and R. rattus (100%) were positive for scrub typhus antibodies. Only A. agrarius (14.7%) and C. lasiura (4.5%) were positive for murine typhus antibodies, whereas only A. agrarius (1.5%) was seropositive for leptospirosis. Seroprevalence rates of scrub typhus and murine typhus based on weight and sex of A. agrarius are presented.
Related JoVE Video
Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi.
Clin. Infect. Dis.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Orientia tsutsugamushi is the etiological agent of scrub typhus, an acute, mite-borne, febrile illness that occurs in the Asia-Pacific region. Historically, strain characterization used serological analysis and revealed dramatic antigenic diversity. Eyeing a recommendation of potential vaccine candidates for broad protection, we review geographic diversity and serological and DNA prevalences. DNA analysis together with immunological analysis suggest that the prototype Karp strain and closely related strains are the most common throughout the region of endemicity. According to serological analysis, approximately 50% of isolates are seroreactive to Karp antisera, and approximately one-quarter of isolates are seroreactive to antisera against the prototype Gilliam strain. Molecular methods reveal greater diversity. By molecular methods, strains phylogenetically similar to Karp make up approximately 40% of all genotyped isolates, followed by the JG genotype group (Japan strains serotypically similar to the Gilliam strain but genetically non-Gilliam; 18% of all genotyped isolates). Three other genotype groups (Kato-related, Kawasaki-like, and TA763-like) each represent approximately 10% of genotyped isolates. Strains genetically similar to the Gilliam strain make up only 5% of isolates. Strains from these groups should be included in any potential vaccine.
Related JoVE Video
Development of three quantitative real-time PCR assays for the detection of Rickettsia raoultii, Rickettsia slovaca, and Rickettsia aeschlimannii and their validation with ticks from the country of Georgia and the Republic of Azerbaijan.
Ticks Tick Borne Dis
Show Abstract
Hide Abstract
A previous surveillance study of human pathogens within ticks collected in the country of Georgia showed a relatively high infection rate for Rickettsia raoultii, R. slovaca, and R. aeschlimannii. These 3 spotted fever group rickettsiae are human pathogens: R. raoultii and R. slovaca cause tick-borne lymphadenopathy (TIBOLA), and R. aeschlimannii causes an infection characterized by fever and maculopapular rash. Three quantitative real-time polymerase chain reaction (qPCR) assays, Rraoul, Rslov, and Raesch were developed and optimized to detect R. raoultii, R. slovaca, and R. aeschlimannii, respectively, by targeting fragments of the outer membrane protein B gene (ompB) using species-specific molecular beacon or TaqMan probes. The 3 qPCR assays showed 100% specificity when tested against a rickettsiae DNA panel (n=20) and a bacteria DNA panel (n=12). The limit of detection was found to be at least 3 copies per reaction for all assays. Validation of the assays using previously investigated tick nucleic acid preparations, which included Rickettsia-free tick samples, tick samples that contain R. raoultii, R. slovaca, R. aeschlimannii, and other Rickettsia spp., gave 100% sensitivity for all 3 qPCR assays. In addition, a total of 65 tick nucleic acid preparations (representing 259 individual ticks) collected from the country of Georgia and the Republic of Azerbaijan in 2009 was tested using the 3 qPCR assays. R. raoultii, R. slovaca, and R. aeschlimannii were not detected in any ticks (n=31) from the Republic of Azerbaijan, but in the ticks from the country of Georgia (n=228) the minimal infection rate for R. raoultii and R. slovaca in Dermacentor marginatus was 10% and 4%, respectively, and for R. aeschlimannii in Haemaphysalis sulcata and Hyalomma spp. it was 1.9% and 20%, respectively.
Related JoVE Video
Rickettsia raoultii, the predominant Rickettsia found in Mongolian Dermacentor nuttalli.
Ticks Tick Borne Dis
Show Abstract
Hide Abstract
Since the year 2005, clinical patterns resembling tick-borne rickettsioses have been noticed in Mongolia. Epidemiological data regarding species of the aetiological agent, tick vector, prevalence, and distribution as well as incidence of human cases throughout Mongolia are still sparse to date. In order to identify Rickettsia species occurring in Mongolia, we investigated Dermacentor nuttalli (n=179) and Ixodes persulcatus (n=374) collected in 4 selected provinces. Rickettsia raoultii was the predominant Rickettsia (82% prevalence) found in D. nuttalli and was also detected in I. persulcatus (0.8%). The Rickettsia prevalence in D. nuttalli from different provinces varied between 70% and 97%. In addition, R. sibirica was identified in approximately 4% of D. nuttalli, but solely from Arkhanghai province. The results of this study extend the common knowledge about the geographic distribution of R. raoultii and its high prevalence in D. nuttalli. Although the pathogenicity of this Rickettsia is still unclear, it should be considered in Mongolian patients suspected of having tick-borne rickettsiosis.
Related JoVE Video
Variable clinical responses of a scrub typhus outbred mouse model to feeding by Orientia tsutsugamushi infected mites.
Exp. Appl. Acarol.
Show Abstract
Hide Abstract
Rodents are the natural hosts for Leptotrombidium mites that transmit Orientia tsutsugamushi, the causative agent of scrub typhus, a potentially fatal febrile human disease. Utilizing mite lines that included O. tsutsugamushi infected and non-infected Leptotrombidium species we investigated the varied infection response of outbred mice (ICR) exposed to L. chiangraiensis (Lc), L. imphalum (Li) and L. deliense (Ld). Each of six mite lines (Lc1, Lc5, Li3, Li4, Li7 and Ld) was separately placed in the inner ears of ICR mice either as a single individual (individual feeding, IF) or as a group of 2-4 individuals (pool feeding, PF). The species of infected chigger feeding on mice significantly affected mortality rates of the mice, with mite lines of Lc causing higher mean (±SE) mortality (90.7 ± 3.6 %) than mite lines of Li (62.9 ± 5.6 %) or Ld (53.6 ± 5.8 %). Mouse responses which included time to death, food consumption and total mice weight change depended on mite species and their O. tsutsugamushi genotype, more than on feeding procedure (IF vs. PF) except for mite lines within the Lc. Infected mite lines of Lc were the most virulent infected mites assessed whereas the infected Ld species was the least virulent for the ICR. Mice killed by various mite lines showed enlarged spleens and produced ascites. The results of this investigation of the clinical responses of ICR mice to feeding by various infected mite lines indicated that the different species of infected mites and their O. tsutsugamushi genotype produced different clinical presentations in ICR mice, a scrub typhus mouse model which mimics the natural transmission of O. tsutsugamushi that is critical for understanding scrub typhus disease in terms of natural transmission, host-pathogen-vector interaction and vaccine development.
Related JoVE Video
Rickettsia felis infection in febrile patients, western Kenya, 2007-2010.
Emerging Infect. Dis.
Show Abstract
Hide Abstract
To determine previous exposure and incidence of rickettsial infections in western Kenya during 2007-2010, we conducted hospital-based surveillance. Antibodies against rickettsiae were detected in 57.4% of previously collected serum samples. In a 2008-2010 prospective study, Rickettsia felis DNA was 2.2× more likely to be detected in febrile than in afebrile persons.
Related JoVE Video
Infectious etiologies of acute febrile illness among patients seeking health care in south-central Cambodia.
Am. J. Trop. Med. Hyg.
Show Abstract
Hide Abstract
The agents of human febrile illness can vary by region and country suggesting that diagnosis, treatment, and control programs need to be based on a methodical evaluation of area-specific etiologies. From December 2006 to December 2009, 9,997 individuals presenting with acute febrile illness at nine health care clinics in south-central Cambodia were enrolled in a study to elucidate the etiologies. Upon enrollment, respiratory specimens, whole blood, and serum were collected. Testing was performed for viral, bacterial, and parasitic pathogens. Etiologies were identified in 38.0% of patients. Influenza was the most frequent pathogen, followed by dengue, malaria, and bacterial pathogens isolated from blood culture. In addition, 3.5% of enrolled patients were infected with more than one pathogen. Our data provide the first systematic assessment of the etiologies of acute febrile illness in south-central Cambodia. Data from syndromic-based surveillance studies can help guide public health responses in developing nations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.