JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Extreme venom variation in Middle Eastern vipers: A proteomics comparison of Eristicophis macmahonii, Pseudocerastes fieldi and Pseudocerastes persicus.
J Proteomics
PUBLISHED: 06-25-2014
Show Abstract
Hide Abstract
Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite their anecdotal reputation for producing severe or even lethal envenomations. This is due in part to the remote and politically unstable regions that they occupy. All species contained are sit and wait ambush feeders. Thus, this study examined their venoms through proteomics techniques in order to establish if this feeding ecology, and putatively low levels of gene flow, have resulted in significant variations in venom profile. The techniques indeed revealed extreme venom variation. This has immediate implications as only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic variation suggests that it would be of only limited use for the other species, even the sister species Pseudocerastes fieldi. The high degree of variation however also points toward these species being rich resources for novel compounds which may have use as lead molecules in drug design and development.
Related JoVE Video
Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes).
Mol. Biol. Evol.
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod "venome" and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts.
Related JoVE Video
Solution structure, membrane interactions, and protein binding partners of the tetraspanin Sm-TSP-2, a vaccine antigen from the human blood fluke Schistosoma mansoni.
J. Biol. Chem.
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
The tetraspanins (TSPs) are a family of integral membrane proteins that are ubiquitously expressed at the surface of eukaryotic cells. TSPs mediate a range of processes at the surface of the plasma membrane by providing a scaffold for the assembly of protein complexes known as tetraspanin-enriched microdomains (TEMs). We report here the structure of the surface-exposed EC2 domain from Sm-TSP-2, a TSP from Schistosoma mansoni and one of the better prospects for the development of a vaccine against schistosomiasis. This is the first solution structure of this domain, and our investigations of its interactions with lipid micelles provide a general model for interactions between TSPs, membranes, and other proteins. Using chemical cross-linking, eight potential protein constituents of Sm-TSP-2-mediated TEMs were also identified. These include proteins important for membrane maintenance and repair, providing further evidence for the functional role of Sm-TSP-2- and Sm-TSP-2-mediated TEMs. The identification of calpain, Sm29, and fructose-bisphosphate aldolase, themselves potential vaccine antigens, suggests that the Sm-TSP-2-mediated TEMs could be disrupted via multiple targets. The identification of further Sm-TSP-2-mediated TEM proteins increases the available candidates for multiplex vaccines and/or novel drugs targeting TEMs in the schistosome tegument.
Related JoVE Video
Multifunctional warheads: diversification of the toxin arsenal of centipedes via novel multidomain transcripts.
J Proteomics
PUBLISHED: 01-05-2014
Show Abstract
Hide Abstract
Arthropod toxins are almost invariably encoded by transcripts encoding prepropeptides that are posttranslationally processed to yield a single mature toxin. In striking contrast to this paradigm, we used a complementary transcriptomic, proteomic and MALDI-imaging approach to identify four classes of multidomain centipede-toxin transcripts that each encodes multiple mature toxins. These multifunctional warheads comprise either: (1) repeats of linear peptides; (2) linear peptides preceding cysteine-rich peptides; (3) cysteine-rich peptides preceding linear peptides; or (4) repeats of linear peptides preceding cysteine-rich peptides. MALDI imaging of centipede venom glands revealed that these peptides are posttranslationally liberated from the original gene product in the venom gland and not by proteases following venom secretion. These multidomain transcripts exhibit a remarkable conservation of coding sequences, in striking contrast to monodomain toxin transcripts from related centipede species, and we demonstrate that they represent a rare class of predatory toxins that have evolved under strong negative selection. We hypothesize that the peptide toxins liberated from multidomain precursors might have synergistic modes of action, thereby allowing negative selection to dominate as the toxins encoded by the same transcript become increasingly interdependent.
Related JoVE Video
Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades.
J Proteomics
PUBLISHED: 01-04-2014
Show Abstract
Hide Abstract
For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as the Oxyuranus venoms analysed include samples from the first coastal taipan (Oxyuranus scutellatus) collected for antivenom production (the snake that killed the collector Kevin Budden), as well as samples from the first Oxyuranus microlepidotus specimen collected after the species' rediscovery in 1976. These results demonstrate that with proper storage techniques, venom samples can retain structural and pharmacological stability. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Related JoVE Video
A Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor).
Toxins (Basel)
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
Although known for their potent venom and ability to prey upon both invertebrate and vertebrate species, the Barychelidae spider family has been entirely neglected by toxinologists. In striking contrast, the sister family Theraphosidae (commonly known as tarantulas), which last shared a most recent common ancestor with Barychelidae over 200 million years ago, has received much attention, accounting for 25% of all the described spider toxins while representing only 2% of all spider species. In this study, we evaluated for the first time the venom arsenal of a barychelid spider, Trittame loki, using transcriptomic, proteomic, and bioinformatic methods. The venom was revealed to be dominated by extremely diverse inhibitor cystine knot (ICK)/knottin peptides, accounting for 42 of the 46 full-length toxin precursors recovered in the transcriptomic sequencing. In addition to documenting differential rates of evolution adopted by different ICK/knottin toxin lineages, we discovered homologues with completely novel cysteine skeletal architecture. Moreover, acetylcholinesterase and neprilysin were revealed for the first time as part of the spider-venom arsenal and CAP (CRiSP/Allergen/PR-1) were identified for the first time in mygalomorph spider venoms. These results not only highlight the extent of venom diversification in this neglected ancient spider lineage, but also reinforce the idea that unique venomous lineages are rich pools of novel biomolecules that may have significant applied uses as therapeutics and/or insecticides.
Related JoVE Video
Proteomic comparison of Hypnale hypnale (hump-nosed pit-viper) and Calloselasma rhodostoma (Malayan pit-viper) venoms.
J Proteomics
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Treatment of Hypnale hypnale bites with commercial antivenoms, even those raised against its sister taxon Calloselasma rhodostoma, has never been clinically successful. As these two genera have been separated for 20million years, we tested to see whether significant variations in venom had accumulated during this long period of evolutionary divergence, and thus could be responsible for the failure of antivenom. Proteomic analyses of C. rhodostoma and H. hypnale venom were performed using 1D and 2D PAGE as well as 2D-DIGE. C. rhodostoma venom was diverse containing large amounts of Disintegrin, Kallikrein, l-amino acid oxidase, Lectin, phospholipase A2 (acidic, basic and neutral) and Snake Venom Metalloprotease. In contrast, while H. hypnale also contained a wide range of toxin types, the venom was overwhelmingly dominated by two molecular weight forms of basic PLA2. 2D-DIGE (2-D Fluorescence Difference Gel Electrophoresis analysis) showed that even when a particular toxin class was shared between the two venoms, there were significant molecular weights or isoelectric point differences. This proteomic difference explains the past treatment failures with C. rhodostoma antivenom and highlights the need for a H. hypnale specific antivenom.
Related JoVE Video
Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles.
Mol. Cell Proteomics
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, L-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery.
Related JoVE Video
Draculas children: molecular evolution of vampire bat venom.
J Proteomics
PUBLISHED: 03-29-2013
Show Abstract
Hide Abstract
While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and platelet aggregation. We show that vampire bat venom proteins possibly evade host immune response by the mutation of the surface chemistry through focal mutagenesis under the guidance of positive Darwinian selection. These results not only contribute to the body of knowledge regarding haematophagous venoms but also provide a rich resource for novel lead compounds for use in drug design and development.
Related JoVE Video
Progress using Tc-99m radiopharmaceuticals for measuring high capacity sites and low density sites.
Drug Discov. Today
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
Technetium-99m (Tc-99m) has long been a mainstay in clinical nuclear medicine, primarily monitoring biological processes in the heart, kidney, liver, and brain. More recently, Tc-99m chelates have been used as the reporter in targeted nuclear medicine probes that monitor changes in specific protein expression products. The strengths remain the inexpensive source of Tc-99m from the Mo-99/Tc-99m generator, its rich chemistry, high-yield kit formulation, and its widespread availability. Hardware and software advances, such as OSEM reconstructions with scatter and attenuation corrections, have led to quantitation of the injected radioactivity in terms of kBq/cm.
Related JoVE Video
Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja).
J Proteomics
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
Intra- and interspecific variation in venom composition has been shown to have a major effect upon the efficacy of antivenoms. Due to the absence of domestically produced antivenoms, Pakistan is wholly reliant upon antivenoms produced in other countries, such as India. However, the efficacy of these antivenoms in neutralising the venoms of Pakistani snakes has not been ascertained. This is symptomatic of the general state of toxicological research in this country, which has a myriad of highly toxic and medically important venomous animals. Thus, there is a dire need for knowledge regarding the fundamental proteomics of these venoms and applied knowledge of the relative efficacy of foreign antivenoms. Here we present the results of our proteomic research on two medically important snakes of Pakistan: Bungarus sindanus and Naja naja. Indian Polyvalent Antivenom (Bharat Serums and Vaccines Ltd), which is currently marketed for use in Pakistan, was completely ineffective against either Pakistani species. In addition to the expected pre- and post-synaptic neurotoxic activity, the venom of the Pakistan population of N. naja was shown to be quite divergent from other populations of this species in being potently myotoxic. These results highlight the importance of studying divergent species and isolated populations, where the same data not only elucidates clinical problems in need of immediate attention, but also uncovers sources for novel toxins with potentially useful activities.
Related JoVE Video
Albumins and their processing machinery are hijacked for cyclic peptides in sunflower.
Nat. Chem. Biol.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
The cyclic peptide sunflower trypsin inhibitor 1 (SFTI-1) blocks trypsin and is a promising drug lead and protein engineering scaffold. We show that SFTI-1 and the newfound SFT-L1 are buried within PawS1 and PawS2, precursors for seed storage protein albumins. Proalbumins are matured by asparaginyl endopeptidase, which we show is required to liberate both ends of SFTI-1 as well as to mature PawS1 albumin. Thus, these peptides emerge from within an albumin precursor by the action of albumins own processing enzyme.
Related JoVE Video
The synthesis and structural characterization of the technetium nitrosyl complexes [TcCl(NO)(SC5H4N)(PPh3)2] and [Tc(NO)(SC5H4N)2(PPh3)].
Inorganica Chim Acta
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
The reaction of the Tc(I) complex [Tc(NO)Cl2(HOMe)(PPh3)2] with stoichiometric amounts of 2-mercatopyridine and a proton scavenger yields [Tc(NO)Cl(Spy)(PPh3)2] or [Tc(NO)(Spy)2(PPh3)], depending upon quantities of ligands employed. These two complexes have been structurally characterized. The small bite angles of the bidentate mercaptopyridine ligands cause significant deviation from octahedral coordination geometry.
Related JoVE Video
Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized controlled trials.
Am. J. Clin. Nutr.
PUBLISHED: 09-29-2010
Show Abstract
Hide Abstract
Growth acceleration as a consequence of relative overnutrition in infancy has been suggested to increase the risk of later obesity. However, few studies have investigated this association by using an experimental study design.
Related JoVE Video
Dietary nucleotides and early growth in formula-fed infants: a randomized controlled trial.
Pediatrics
PUBLISHED: 09-13-2010
Show Abstract
Hide Abstract
Dietary nucleotides are nonprotein nitrogenous compounds that are found in high concentrations in breast milk and are thought to be conditionally essential nutrients in infancy. A high nucleotide intake has been suggested to explain some of the benefits of breastfeeding compared with formula feeding and to promote infant growth. However, relatively few large-scale randomized trials have tested this hypothesis in healthy infants.
Related JoVE Video
Lectin magnetic bead array for biomarker discovery.
J. Proteome Res.
PUBLISHED: 08-24-2010
Show Abstract
Hide Abstract
Alterations in protein glycosylation play an important role in patho-physiology, and much effort has been devoted to detecting glycoprotein biomarkers. In this manuscript, we describe the development of a novel method for monitoring alterations in protein glycosylation. Lectins are used as individual affinity reagents and coupled to magnetic beads (Dynabeads) in a microplate array format for isolation of glycosylated proteins. Isolated glycoproteins are digested with trypsin in-solution followed by LC-MS/MS, allowing a liquid handler-assisted high throughput workflow. We demonstrate the specific and reproducible affinity-isolation of glycoproteins using the lectin Dynabead array technology. When used with serum, we achieved one-step purification of glycoproteins with minimal coisolation of abundant serum proteins including albumin. We further optimized the proteomics workflow to allow transfer to a liquid handler for automation. In summary, we report the development of a high throughput platform to detect alterations in protein glycosylation which will be useful in glycoproteomics studies, particularly clinical proteomics studies where large sample sizes are required to achieve statistical power.
Related JoVE Video
Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells.
J. Cell Biol.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.
Related JoVE Video
A novel strategy for the targeted analysis of protein and peptide metabolites.
Proteomics
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
In many biological applications such as epitope discovery or drug metabolism studies, the detection of naturally processed exogenous proteins (e.g. vaccines or peptide therapeutics) and their metabolites is frequently complicated by the presence of a complex endogenous mixture of closely related or even identical compounds. We describe a method that incorporates stable isotope labelling of the protein of interest, allowing the selective screening of the intact molecule and all metabolites using a modified precursor ion scan. This method involves monitoring the low-molecular-weight fragment ions produced during MS/MS that distinguish isotopically labelled peptides from related endogenous compounds. All isotopically labelled peptides can be selected using this method. The technique makes no assumptions about the processed or post-translational state of the peptide, and hence can selectively screen out modified peptides that would otherwise be missed by single reaction monitoring approaches. This method does not replace single reaction monitoring or regular precursor scanning techniques; instead, it is a method that can be used when the assumptions required for the former two techniques cannot be predicted. The potential for this technique to be used in metabolism and pharmacokinetic experiments is discussed with specific examples looking at the metabolism of ?-synuclein in serum and the brain.
Related JoVE Video
The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis viverrini.
Proteomics
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Infection with the human liver fluke, Opisthorchis viverrini, is a serious public health problem in Thailand, Laos and nearby locations in Southeast Asia. Both experimental and epidemiological evidence strongly implicate liver fluke infection in the etiology of one of the liver cancer subtypes, cholangiocarcinoma (CCA). To identify parasite proteins critical for liver fluke survival and the etiology of CCA, OFFGEL electrophoresis and multiple reaction monitoring were employed to characterize 300 parasite proteins from the O. viverrini excretory/secretory products and, utilizing selective labeling and sequential solubilization, from the host-exposed tegument. The excretory/secretory included a complex mixture of proteins that have been associated with cancers, including proteases of different mechanistic classes and orthologues of mammalian growth factors and anti-apoptotic proteins. Also identified was a cysteine protease inhibitor which, in other helminth pathogens, induces nitric oxide production by macrophages, and, hence may contribute to malignant transformation of inflamed cells. More than 160 tegumental proteins were identified using sequential solubilization of isolated teguments, and a subset of these was localized to the surface membrane of the tegument by labeling living flukes with biotin and confirming surface localization with fluorescence microscopy. These included annexins, which are potential immuno-modulators, and orthologues of the schistosomiasis vaccine antigens Sm29 and tetraspanin-2. Novel roles in pathogenesis were suggested for the tegument-host interface since more than ten surface proteins had no homologues in the public databases. The O. viverrini proteins identified here provide an extensive catalogue of novel leads for research on the pathogenesis of opisthorchiasis and the development of novel interventions for this disease and CCA, as well as providing a scaffold for sequencing the genome of this fluke.
Related JoVE Video
Should the macroscopically normal appendix be removed during laparoscopy for acute right iliac fossa pain when no other explanatory pathology is found?
Surg Laparosc Endosc Percutan Tech
PUBLISHED: 10-24-2009
Show Abstract
Hide Abstract
Acute appendicitis remains the most common surgical emergency and although diagnosis should be made on clinical grounds, sometimes this can be difficult. Laparoscopy has gained increasing favour as a method of both investigating right iliac fossa pain and treating the finding of appendicitis. The aim of this study was to determine the accuracy of intraoperative diagnosis of appendicitis.
Related JoVE Video
Exposed proteins of the Schistosoma japonicum tegument.
Int. J. Parasitol.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
The ability of the mammalian blood fluke Schistosoma japonicum to survive in the inhospitable environment of the mammalian bloodstream can be attributed, at least in part, to its host-exposed outer surface, called the tegument. The tegument is a dynamic organ and is involved in nutrition, immune evasion and modulation, excretion, osmoregulation and signal transduction. Given its importance for parasite survival, proteins exposed to the host at the surface of the tegument are ideal targets for the development of vaccines and drugs. By biotinylating live adult worms and using a combination of OFFGEL electrophoresis and tandem mass spectrometry 54 proteins were identified as putatively host-exposed in S. japonicum. These included glucose transport proteins, an amino permease, a leucine aminopeptidase and a range of transporters, heat shock proteins and novel immune-active proteins. Members of the tetraspanin protein family and a homologue of Sm 29, a tegument membrane protein from Schistosoma mansoni, both effective vaccine antigens in S. mansoni, were also identified. The fate of labelled surface proteins was monitored over time using electron microscopy and revealed that biotinylated proteins were rapidly internalised from the surface of the tegument and trafficked into the cytoplasmic bridges that connect the distal cytoplasm of the tegument to the underlying cell bodies. The results reported herein dramatically increase the number of S. japonicum proteins known to be exposed to the host and, hence, those of interest as therapeutic targets. The ability of the parasite to rapidly internalise proteins at its surface has implications for the development of vaccines and may explain how these parasites are able to avoid the host immune system for long periods of time.
Related JoVE Video
Comparison of the peptidome and insecticidal activity of venom from a taxonomically diverse group of theraphosid spiders.
Toxicon
PUBLISHED: 08-13-2009
Show Abstract
Hide Abstract
We screened a panel of theraphosid venoms in two orders of insect in order to determine whether these bioassays would help in the selection of candidate venoms for future discovery of insecticidal toxins. Venoms from six different theraphosid genera were compared with venom from the Australian funnel-web spider Hadronyche infensa (Hexathelidae). The tarantulas included were Coremiocnemis tropix, Selenocosmia crossipes, and Selenotholus foelschei from Australia and Brachypelma albiceps and Brachypelma hamorii from Mexico. The insects assayed, Tenebrio molitor (Coleoptera: Tenebrionidae) and Acheta domesticus (Orthoptera: Gryllidae), were selected because of their relevance as model holometabolous and hemimetabolous insects, respectively, as well as their taxonomic relationship to economically important pest insects. Despite significant differences in their peptide/protein profiles as determined using SDS-PAGE, HPLC, and mass spectrometry, all of the theraphosid venoms exhibited remarkably similar LD50 values of 46-126 microg/g for crickets and 0.5-4.0 microg/g for mealworms. Notably, mealworms were on average 50-fold more susceptible than crickets to each of the crude theraphosid venoms and consequently they provide an excellent bioassay system when venom supply is limited. This study indicates that even closely related spiders have evolved quite different toxin repertoires that nevertheless have comparable efficiency with respect to killing their primary prey, namely insects.
Related JoVE Video
Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction.
J. Biol. Chem.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3.
Related JoVE Video
Rosiglitazone reduces the development and rupture of experimental aortic aneurysms.
Circulation
PUBLISHED: 06-08-2009
Show Abstract
Hide Abstract
Development and rupture of aortic aneurysms involve a combination of complex biological processes. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, has been shown to have a broad spectrum of effects in vivo. The hypothesis that rosiglitazone would reduce aneurysm expansion or rupture was tested in the angiotensin II (Ang II)-induced hypercholesterolemic mouse model.
Related JoVE Video
Listening as a method of addressing psychological distress.
J Nurs Manag
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
This paper discusses the values of therapeutic listening and ways that emotional difficulties can impact palliative nurses abilities to provide psychological care.
Related JoVE Video
A granulin-like growth factor secreted by the carcinogenic liver fluke, Opisthorchis viverrini, promotes proliferation of host cells.
PLoS Pathog.
PUBLISHED: 04-13-2009
Show Abstract
Hide Abstract
The human liver fluke, Opisthorchis viverrini, infects millions of people throughout south-east Asia and is a major cause of cholangiocarcinoma, or cancer of the bile ducts. The mechanisms by which chronic infection with O. viverrini results in cholangiocarcinogenesis are multi-factorial, but one such mechanism is the secretion of parasite proteins with mitogenic properties into the bile ducts, driving cell proliferation and creating a tumorigenic environment. Using a proteomic approach, we identified a homologue of human granulin, a potent growth factor involved in cell proliferation and wound healing, in the excretory/secretory (ES) products of the parasite. O. viverrini granulin, termed Ov-GRN-1, was expressed in most parasite tissues, particularly the gut and tegument. Furthermore, Ov-GRN-1 was detected in situ on the surface of biliary epithelial cells of hamsters experimentally infected with O. viverrini. Recombinant Ov-GRN-1 was expressed in E. coli and refolded from inclusion bodies. Refolded protein stimulated proliferation of murine fibroblasts at nanomolar concentrations, and proliferation was inhibited by the MAPK kinase inhibitor, U0126. Antibodies raised to recombinant Ov-GRN-1 inhibited the ability of O. viverrini ES products to induce proliferation of murine fibroblasts and a human cholangiocarcinoma cell line in vitro, indicating that Ov-GRN-1 is the major growth factor present in O. viverrini ES products. This is the first report of a secreted growth factor from a parasitic worm that induces proliferation of host cells, and supports a role for this fluke protein in establishment of a tumorigenic environment that may ultimately manifest as cholangiocarcinoma.
Related JoVE Video
Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS.
Peptides
PUBLISHED: 03-30-2009
Show Abstract
Hide Abstract
Cone snails have evolved an assortment of venom peptides as an evolutionary strategy for rapid prey immobilization and defence. Earlier studies estimated approximately 100 conopeptides per species. In this study we optimized liquid chromatography and electrospray ionization mass spectrometry for the detection of conopeptides in crude venom to characterize conopeptides present in the venom of individual specimens of Conus textile, C. imperialis and C. marmoreus. Using this approach, we have expanded the predicted number of venom peptides 10-fold to an estimate of 1000-1900 conopeptides per species. Our investigation has also revealed a surprisingly high level of intra-species variation that distinguishes cone snails from other venomous species including spiders and scorpions. Given this inherent diversity and variability, more sensitive bioassays and sequencing techniques will be required to fully explore conotoxin bioactivity.
Related JoVE Video
Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh.
Toxicon
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Ciguatera is a significant food borne disease caused by potent polyether toxins known as ciguatoxins, which accumulate in the flesh of ciguateric fish at risk levels above 0.1 ppb. The management of ciguatera has been hindered by the lack of analytical methods to detect and quantify clinically relevant levels of ciguatoxin in easily prepared crude extracts of fish. Here we report a ciguatoxin rapid extraction method (CREM) that allows the rapid preparation of fish flesh extracts for the detection and quantification of ciguatoxin by gradient reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS). CREM-LC/MS/MS delivers a linear response to P-CTX-1 spiked into fish prior to extraction. A similar response was obtained for P-CTX-1 spiked after extraction, indicating >95% extraction efficiency was achieved overall and 85% at the limit of quantification (0.1 ppb). Using this approach, levels >or=0.1 ppb P-CTX-1 could be detected and quantified from an extract of 2g fish flesh, making it suitable as a confirmatory assay for suspect ciguateric carnivorous fish in the Pacific Ocean. The approach is designed to simplify the extraction and analysis of multiple samples per day.
Related JoVE Video
A sensitive LC/MS/MS assay of 25OH vitamin D3 and 25OH vitamin D2 in dried blood spots.
Clin. Chim. Acta
PUBLISHED: 02-09-2009
Show Abstract
Hide Abstract
Low levels of 25 hydroxyvitamin D (25OHD) during early development is associated with a range of adverse health outcomes. While a number of methods exist to measure 25OHD in sera, none have been specifically developed to examine dried blood spots (DBS).
Related JoVE Video
Mass landscapes of seven scorpion species: The first analyses of Australian species with 1,5-DAN matrix.
J Venom Res
Show Abstract
Hide Abstract
Scorpion venoms have been studied for over fifty years; however, the majority of research has focussed primarily on medically important Buthidae species. Additionally, venoms of the estimated 200 species of scorpion native to Australia have received very little attention. The first venom mass profiles of six non-buthid and one buthid scorpion species are presented herein, four of which are endemic to Australia. While masses under 5 kDa dominated the venoms of all species, the buthid venom contained considerably more masses between 7 and 8 kDa than those of the non-buthids, corroborating the emergent trend that buthids are richer in long-chain neurotoxins than non-buthids. The Australian scorpion venom fractions were also analysed with the relatively new MALDI-ToF matrix 1,5-DAN. Over forty partial sequences were obtained, the majority of which are homologous to scorpion antimicrobials such as opistoporin and IsCT2. Overall, this study is the single most comprehensive mass spectrometric analysis of scorpion venom landscapes to date and provides an insight into untapped Australian species.
Related JoVE Video
Challenges in mass spectrometry-based quantification of bioactive peptides: a case study exploring the neuropeptide Y family.
Biopolymers
Show Abstract
Hide Abstract
The study of biologically active peptides is critical to the understanding of physiological pathways, especially those involved in the development of disease. Historically, the measurement of biologically active endogenous peptides has been undertaken by radioimmunoassay, a highly sensitive and robust technique that permits the detection of physiological concentrations in different biofluid and tissue extracts. Over recent years, a range of mass spectrometric approaches have been applied to peptide quantification with limited degrees of success. Neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) belong to the NPY family exhibiting regulatory effects on appetite and feeding behavior. The physiological significance of these peptides depends on their molecular forms and in vivo concentrations systemically and at local sites within tissues. In this report, we describe an approach for quantification of individual peptides within mixtures using high-performance liquid chromatography electrospray ionization tandem mass spectrometry analysis of the NPY family peptides. Aspects of quantification including sample preparation, the use of matrix-matched calibration curves, and internal standards will be discussed. This method for the simultaneous determination of NPY, PYY, and PP was accurate and reproducible but lacks the sensitivity required for measurement of their endogenous concentration in plasma. The advantages of mass spectrometric quantification will be discussed alongside the current obstacles and challenges.
Related JoVE Video
Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom.
Mol. Cell Proteomics
Show Abstract
Hide Abstract
Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50-200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of ? 100 gene transcripts can generate thousands of conopeptides in a single species of cone snail.
Related JoVE Video
The weak complex between RhoGAP protein ARHGAP22 and signal regulatory protein 14-3-3 has 1:2 stoichiometry and a single peptide binding mode.
PLoS ONE
Show Abstract
Hide Abstract
ARHGAP22 is a RhoGAP protein comprising an N-terminal PH domain, a RhoGAP domain and a C-terminal coiled-coil domain. It has recently been identified as an Akt substrate that binds 14-3-3 proteins in response to treatment with growth factors involved in cell migration. We used a range of biophysical techniques to investigate the weak interaction between 14-3-3 and a truncated form of ARHGAP22 lacking the coiled-coil domain. This weak interaction could be stabilized by chemical cross-linking which we used to show that: a monomer of ARHGAP22 binds a dimer of 14-3-3; the ARHGAP22 PH domain is required for the 14-3-3 interaction; the RhoGAP domain is unlikely to participate in the interaction; Ser16 is the more important of two predicted 14-3-3 binding sites; and, phosphorylation of Ser16 may not be necessary for 14-3-3 interaction under the conditions we used. Small angle X-ray scattering and cross-link information were used to generate solution structures of the isolated proteins and of the cross-linked ARHGAP22:14-3-3 complex, showing that no major rearrangement occurs in either protein upon binding, and supporting a role for the PH domain and N-terminal peptide of ARHGAP22 in the 14-3-3 interaction. Small-angle X-ray scattering measurements of mixtures of ARHGAP22 and 14-3-3 were used to establish that the affinity of the interaction is ?30 µM.
Related JoVE Video
Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.
Related JoVE Video
Single-step protease cleavage elution for identification of protein-protein interactions from GST pull-down and mass spectrometry.
Proteomics
Show Abstract
Hide Abstract
The study of protein-protein interactions is a major theme in biological disciplines. Pull-down or affinity-precipitation assays using glutathione S-transferase (GST) fusion proteins have become one of the most common and valuable approaches to identify novel binding partners for proteins of interest (bait). Non-specific binding of prey proteins to the beads or to GST itself however, inevitably complicates and impedes subsequent analysis of pull-down results. A variety of measures, each with inherent advantages and limitations, can minimise the extent of the background. This technical brief details and tests a modification of established GST pull-down protocols. By specifically eluting only the bait (minus the GST tag) and the associated non-specific binding proteins with a simple, single-step protease cleavage, a cleaner platform for downstream protein identification with mass spectrometry is established. We present a proof of concept for this method, as evidenced by a GST pull-down/mass spectrometry case study of the small GTPase Rab31 in which: (i) sensitivity was enhanced, (ii) a reduced level of background was observed, (iii) distinguishability of non-specific contaminant proteins from genuine binders was improved and (iv) a putative new protein-protein interaction was discovered. Our protease cleavage step is readily applicable to all further affinity tag pull-downs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.