JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Spatial Segregation between Invasive and Native Commensal Rodents in an Urban Environment: A Case Study in Niamey, Niger.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Invasive rodents have been responsible for the diffusion worldwide of many zoonotic agents, thus representing major threats for public health. Cities are important hubs for people and goods exchange and are thus expected to play a pivotal role in invasive commensal rodent dissemination. Yet, data about urban rodents' ecology, especially invasive vs. native species interactions, are dramatically scarce. Here, we provide results of an extensive survey of urban rodents conducted in Niamey, Niger, depicting the early stages of rodent bioinvasions within a city. We explore the species-specific spatial distributions throughout the city using contrasted approaches, namely field sampling, co-occurrence analysis, occupancy modelling and indicator geostatistics. We show that (i) two species (i.e. rural-like vs. truly commensal) assemblages can be identified, and that (ii) within commensal rodents, invasive (Rattus rattus and Mus musculus) and native (Mastomys natalensis) species are spatially segregated. Moreover, several pieces of arguments tend to suggest that these exclusive distributions reflect an ongoing native-to-invasive species turn over. The underlying processes as well as the possible consequences for humans are discussed.
Related JoVE Video
Range expansion drives dispersal evolution in an equatorial three-species symbiosis.
PLoS ONE
PUBLISHED: 03-05-2009
Show Abstract
Hide Abstract
Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.
Related JoVE Video
Ecophylogenetics: advances and perspectives.
Biol Rev Camb Philos Soc
Show Abstract
Hide Abstract
Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes. The time is ripe to assess critically the extent to which the integration of phylogeny into these different fields of ecology has delivered on its promise. Here we review how phylogenetic information has been used to identify better the key components of species interactions with their biotic and abiotic environments, to determine the relationships between diversity and ecosystem functioning and ultimately to establish good management practices to protect overall biodiversity in the face of global change. We evaluate the relevance of information provided by phylogenies to ecologists, highlighting current potential weaknesses and needs for future developments. We suggest that despite the strong progress that has been made, a consistent unified framework is still missing to link local ecological dynamics to macroevolution. This is a necessary step in order to interpret observed phylogenetic patterns in a wider ecological context. Beyond the fundamental question of how evolutionary history contributes to shape communities, ecophylogenetics will help ecology to become a better integrative and predictive science.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.