JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Innate Defense against Fungal Pathogens.
Cold Spring Harb Perspect Med
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.
Related JoVE Video
Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1? production in response to ?-glucans and the fungal pathogen, Candida albicans.
J. Immunol.
PUBLISHED: 07-25-2014
Show Abstract
Hide Abstract
Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The nucleotide-binding domain and leucine-rich repeat containing family (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in triggering caspase-1-dependent IL-1? maturation and resistance to fungal dissemination in Candida albicans infection. ?-Glucans are major components of fungal cell walls that trigger IL-1? secretion in both murine and human immune cells. In this study, we sought to determine the contribution of ?-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-apoptosis-associated speck-like protein containing caspase recruitment domain protein-caspase-1 inflammasome is absolutely critical for IL-1? production in response to ?-glucans. Interestingly, we also found that both complement receptor 3 (CR3) and dectin-1 play a crucial role in coordinating ?-glucan-induced IL-1? processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the proapoptotic protease caspase-8 in promoting ?-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1? maturation. A strong requirement for CR3 and caspase-8 also was found for NLRP3-dependent IL-1? production in response to heat-killed C. albicans. Taken together, these results define the importance of dectin-1, CR3, and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating ?-glucan- and C. albicans-induced innate responses in dendritic cells. Collectively, these findings establish a novel link between ?-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components.
Related JoVE Video
MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
J. Exp. Med.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
Related JoVE Video
Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis.
Antimicrob. Agents Chemother.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.
Related JoVE Video
Rift Valley fever virus infection induces activation of the NLRP3 inflammasome.
Virology
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1? processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1? during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells.
Related JoVE Video
Reduced frequency of a CD14+ CD16+ monocyte subset with high Toll-like receptor 4 expression in cord blood compared to adult blood contributes to lipopolysaccharide hyporesponsiveness in newborns.
Clin. Vaccine Immunol.
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
The human innate immune response to pathogens is not fully effective and mature until well into childhood, as exemplified by various responses to Toll-like receptor (TLR) agonists in newborns compared to adults. To better understand the mechanistic basis for this age-related difference in innate immunity, we compared tumor necrosis factor alpha (TNF-?) production by monocytes from cord blood (CB) and adult blood (AB) in response to LAM (lipoarabinomannan from Mycobacterium tuberculosis, a TLR2 ligand) and LPS (lipopolysaccharide from Escherichia coli, a TLR4 ligand). LPS or LAM-induced TNF-? production was 5 to 18 times higher in AB than in CB monocytes, whereas interleukin-1? (IL-1?) stimulated similar levels of TNF-? in both groups, suggesting that decreased responses to LPS or LAM in CB are unlikely to be due to differences in the MyD88-dependent signaling pathway. This impaired signaling was attributable, in part, to lower functional TLR4 expression, especially on CD14(+) CD16(+) monocytes, which are the primary cell subset for LPS-induced TNF-? production. Importantly, the frequency of CD14(+) CD16(+) monocytes in CB was 2.5-fold lower than in AB (P < 0.01). CB from Kenyan newborns sensitized to parasite antigens in utero had more CD14(+) CD16(+) monocytes (P = 0.02) and produced higher levels of TNF-? in response to LPS (P = 0.004) than CB from unsensitized Kenyan or North American newborns. Thus, a reduced CD14(+) CD16(+) activated/differentiated monocyte subset and a correspondingly lower level of functional TLR4 on monocytes contributes to the relatively low TNF-? response to LPS observed in immunologically naive newborns compared to the response in adults.
Related JoVE Video
RNA helicase signaling is critical for type i interferon production and protection against Rift Valley fever virus during mucosal challenge.
J. Virol.
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Rift Valley fever virus (RVFV) is an emerging RNA virus with devastating economic and social consequences. Clinically, RVFV induces a gamut of symptoms ranging from febrile illness to retinitis, hepatic necrosis, hemorrhagic fever, and death. It is known that type I interferon (IFN) responses can be protective against severe pathology; however, it is unknown which innate immune receptor pathways are crucial for mounting this response. Using both in vitro assays and in vivo mucosal mouse challenge, we demonstrate here that RNA helicases are critical for IFN production by immune cells and that signaling through the helicase adaptor molecule MAVS (mitochondrial antiviral signaling) is protective against mortality and more subtle pathology during RVFV infection. In addition, we demonstrate that Toll-like-receptor-mediated signaling is not involved in IFN production, further emphasizing the importance of the RNA cellular helicases in type I IFN responses to RVFV.
Related JoVE Video
Host defense at the ocular surface.
Int. Rev. Immunol.
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.
Related JoVE Video
A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans.
PLoS Pathog.
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1? production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection.
Related JoVE Video
Arbovirus prevalence in mosquitoes, Kenya.
Emerging Infect. Dis.
PUBLISHED: 02-05-2011
Show Abstract
Hide Abstract
Few studies have investigated the many mosquito species that harbor arboviruses in Kenya. During the 2006-2007 Rift Valley fever outbreak in North Eastern Province, Kenya, exophilic mosquitoes were collected from homesteads within 2 affected areas: Gumarey (rural) and Sogan-Godud (urban). Mosquitoes (n = 920) were pooled by trap location and tested for Rift Valley fever virus and West Nile virus. The most common mosquitoes trapped belonged to the genus Culex (75%). Of 105 mosquito pools tested, 22% were positive for Rift Valley fever virus, 18% were positive for West Nile virus, and 3% were positive for both. Estimated mosquito minimum infection rates did not differ between locations. Our data demonstrate the local abundance of mosquitoes that could propagate arboviral infections in Kenya and the high prevalence of vector arbovirus positivity during a Rift Valley fever outbreak.
Related JoVE Video
Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptors.
J. Biol. Chem.
PUBLISHED: 08-19-2010
Show Abstract
Hide Abstract
Aseptic loosening of orthopaedic implants is induced by wear particles generated from the polymeric and metallic components of the implants. Substantial evidence suggests that activation of Toll-like receptors (TLRs) may contribute to the biological activity of the wear particles. Although pathogen-associated molecular patterns (PAMPs) produced by Gram-positive bacteria are likely to be more common in patients with aseptic loosening, prior studies have focused on LPS, a TLR4-specific PAMP produced by Gram-negative bacteria. Here we show that both TLR2 and TLR4 contribute to the biological activity of titanium particles with adherent bacterial debris. In addition, lipoteichoic acid, a PAMP produced by Gram-positive bacteria that activates TLR2, can, like LPS, adhere to the particles and increase their biological activity, and the increased biological activity requires the presence of the cognate TLR. Moreover, three lines of evidence support the conclusion that TLR activation requires bacterially derived PAMPs and that endogenously produced alarmins are not sufficient. First, neither TLR2 nor TLR4 contribute to the activity of "endotoxin-free" particles as would be expected if alarmins are sufficient to activate the TLRs. Second, noncognate TLRs do not contribute to the activity of particles with adherent LPS or lipoteichoic acid as would be expected if alarmins are sufficient to activate the TLRs. Third, polymyxin B, which inactivates LPS, blocks the activity of particles with adherent LPS. These results support the hypothesis that PAMPs produced by low levels of bacterial colonization may contribute to aseptic loosening of orthopaedic implants.
Related JoVE Video
CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation.
J. Neurosci.
PUBLISHED: 09-25-2009
Show Abstract
Hide Abstract
Microglia are the brains tissue macrophages and are found in an activated state surrounding beta-amyloid plaques in the Alzheimers disease brain. Microglia interact with fibrillar beta-amyloid (fAbeta) through an ensemble of surface receptors composed of the alpha(6)beta(1) integrin, CD36, CD47, and the class A scavenger receptor. These receptors act in concert to initiate intracellular signaling cascades and phenotypic activation of these cells. However, it is unclear how engagement of this receptor complex is linked to the induction of an activated microglial phenotype. We report that the response of microglial cells to fibrillar forms of Abeta requires the participation of Toll-like receptors (TLRs) and the coreceptor CD14. The response of microglia to fAbeta is reliant upon CD14, which act together with TLR4 and TLR2 to bind fAbeta and to activate intracellular signaling. We find that cells lacking these receptors could not initiate a Src-Vav-Rac signaling cascade leading to reactive oxygen species production and phagocytosis. The fAbeta-mediated activation of p38 MAPK also required CD14, TLR4, and TLR2. Inhibition of p38 abrogated fAbeta-induced reactive oxygen species production and attenuated the induction of phagocytosis. Microglia lacking CD14, TLR4, and TLR2 showed no induction of phosphorylated IkappaBalpha following fAbeta. These data indicate these innate immune receptors function as members of the microglial fAbeta receptor complex and identify the signaling mechanisms whereby they contribute to microglial activation.
Related JoVE Video
An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans.
Cell Host Microbe
PUBLISHED: 04-11-2009
Show Abstract
Hide Abstract
Candida albicans is an opportunistic fungal pathogen causing life-threatening mucosal and systemic infections in immunocompromised humans. Using a murine model of mucosal Candida infection, we investigated the role of the proinflammatory cytokine IL-1beta in host defense to Candida albicans. We find that the synthesis, processing, and release of IL-1beta in response to Candida are tightly controlled and first require transcriptional induction, followed by a second signal leading to caspase-1-mediated cleavage of the pro-IL-1beta cytokine. The known fungal pattern recognition receptors TLR2 and Dectin-1 regulate IL-1beta gene transcription, whereas the NLRP3-containing proinflammatory multiprotein complex, the NLRP3 inflammasome, controls caspase-1-mediated cleavage of pro-IL-1beta. Furthermore, we show that TLR2, Dectin-1, and NLRP3 are essential for defense against dissemination of mucosal infection and mortality in vivo. Therefore, in addition to sensing bacterial and viral pathogens, the NLRP3 inflammasome senses fungal pathogens and is critical in host defense against Candida.
Related JoVE Video
TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis.
Cell. Immunol.
PUBLISHED: 02-22-2009
Show Abstract
Hide Abstract
Mycobacterium tuberculosis (Mtb) signals through Toll-like receptor 2 (TLR2) to regulate antigen presenting cells (APCs). Mtb lipoproteins, including LpqH, LprA, LprG and PhoS1, are TLR2 agonists, but their co-receptor requirements are unknown. We studied Mtb lipoprotein-induced responses in TLR2(-/-), TLR1(-/-), TLR6(-/-), CD14(-/-) and CD36(-/-) macrophages. Responses to LprA, LprG, LpqH and PhoS1 were completely dependent on TLR2. LprG, LpqH, and PhoS1 were dependent on TLR1, but LprA did not require TLR1. None of the lipoproteins required TLR6, although a redundant contribution by TLR6 cannot be excluded. CD14 contributed to detection of LprA, LprG and LpqH, whereas CD36 contributed only to detection of LprA. Studies of lung APC subsets revealed lower TLR2 expression by CD11b(high)/CD11c(low) lung macrophages than CD11b(low)/CD11c(high) alveolar macrophages, which correlated with hyporesponsiveness of lung macrophages to LpqH. Thus, lung APC subsets differ in TLR expression, which may determine differences in responses to Mtb.
Related JoVE Video
An early complement-dependent and TLR-4-independent phase in the pathogenesis of ethanol-induced liver injury in mice.
Hepatology
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
The innate immune system has been implicated in the pathogenesis of alcoholic liver disease. Although innate immunity is usually considered an early response to injury, previous work implicating innate immunity in ethanol-induced liver injury focuses primarily on long-term ethanol exposure. We investigated the early period of ethanol exposure to determine whether there were temporal associations between activation of innate immune responses and known correlates of liver injury. Female C57BL/6 mice were allowed free access to an ethanol-containing Lieber-DeCarli diet or were pair-fed a control diet. Within 4 days of ethanol exposure, we observed a striking spike in expression of hepatic proinflammatory cytokines-including tumor necrosis factor alpha (TNF-alpha), interleukin-6, and interferon-gamma-prior to hepatic triglyceride accumulation or increased plasma alanine aminotransferase activities, as well as before the induction of cytochrome P450 2E1 or oxidative stress. This early spike in inflammatory cytokines coincided with deposition of C3b-iC3b/C3c (C3b) in the liver. This deposition, resulting from the cleavage of the third component of the complement system (C3), is evidence for activation of complement in response to ethanol. C3(-/-) mice were protected from the early, ethanol-induced increase in hepatic TNF-alpha expression. Ethanol increased C3b deposition in mice deficient in C3a receptor or C5a receptor, as well as in wild-type mice depleted of hepatic macrophages; however, there was no increase in hepatic TNF-alpha in the absence of C3a receptor, C5a receptor, or hepatic macrophages. In contrast, the absence of Toll-like receptor 4 (TLR-4) had no effect on the early, ethanol-induced increase in either C3b or TNF-alpha.
Related JoVE Video
Cutting edge: IL-1? processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1.
J. Immunol.
Show Abstract
Hide Abstract
To examine the role of caspase-1 and the NLRC4 inflammasome during bacterial infection, C57BL/6, IL-1?(-/-), caspase-1(-/-), and NLRC4(-/-) mouse corneas were infected with ExoS/T- or ExoU-expressing Pseudomonas aeruginosa. We found that IL-1? was essential for neutrophil recruitment and bacterial clearance and was produced by myeloid cells rather than resident cells. In addition, neutrophils were found to be the primary source of mature IL-1? during infection, and there was no significant difference in IL-1? processing between C57BL/6 and caspase-1(-/-) or NLRC4(-/-) infected corneas. IL-1? cleavage by human and mouse neutrophils was blocked by serine protease inhibitors and was impaired in infected neutrophil elastase (NE)(-/-) corneas. NE(-/-) mice also had an impaired ability to clear the infection. Together, these results demonstrate that during P. aeruginosa infection, neutrophils are the primary source of mature IL-1? and that IL-1? processing is dependent on serine proteases and not NLRC4 or caspase-1.
Related JoVE Video
Ocular manifestations of the autoinflammatory syndromes.
Ophthalmic Genet.
Show Abstract
Hide Abstract
The autoinflammatory syndromes are rare inherited disorders characterized by recurrent attacks of multi-system inflammation caused by genetic mutations that result in abnormal upregulation of key innate immune mediators. The term autoinflammatory syndromes includes a broad variety of disorders, including cryopyrin-associated periodic syndromes (CAPS) such as neonatal onset multisystem inflammatory disease (NOMID), familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), periodic fever syndromes, including familial Mediterranean fever (FMF), TNF receptor-1 associated periodic syndrome (TRAPS), and Blau syndrome. Ocular manifestations are frequent and diverse in affected patients, and visual impairment and blindness are not uncommon sequelae of chronic active disease. Novel therapeutic interventions targeting specific pathophysiologic mechanisms have been extremely promising in the treatment of these disorders. The purpose of this article is to provide a review of these disorders with a focus on pathogenesis, clinical manifestations, ophthalmologic involvement, and available treatment options.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.