JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol.
Biotechnol. Bioeng.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Deoxyviolacein is a microbial drug with biological activity against tumors, gram-positive bacteria, and fungal plant pathogens. Here, we describe an Escherichia coli strain for heterologous production of this high-value drug from glycerol. Plasmid-based expression of the deoxyviolacein cluster vioABCE was controlled by the araBAD promoter and induction by L-arabinose. Through elimination of L-arabinose catabolism in E. coli, the pentose sugar could be fully directed to induction of deoxyviolacein biosynthesis and was no longer metabolized, as verified by (13) C isotope experiments. Deletion of the araBAD genes beneficially complemented with previously described (i) engineering of the pentose phosphate pathway, (ii) chorismate biosynthesis, (iii) tryptophan biosynthesis, (iv) improved supply of L-serine, (v) elimination of tryptophan repression, and (vi) of tryptophan catabolism. Subsequent screening of the created next-generation producer E. coli dVio-8 identified glycerol as optimum carbon source and a level of 100?mg?L(-1) of L-arabinose as optimum for induction. Transferred to a glycerol-based fed-batch process, E. coli dVio-8 surpassed the gram scale and produced 1.6?g?L(-1) deoxyviolacein. With straightforward extraction from culture broth and purification by flash chromatography, deoxyviolacein was obtained at >99.5% purity. Biotechnol. Bioeng. 2014;111: 2280-2289. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Endo- and exoglucanase activities in bacteria from mangrove sediment.
Braz. J. Microbiol.
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.
Related JoVE Video
Draft Genome Sequence of Methylobacterium mesophilicum Strain SR1.6/6, Isolated from Citrus sinensis.
Genome Announc
PUBLISHED: 06-22-2013
Show Abstract
Hide Abstract
Methylobacterium mesophilicum strain SR1.6/6 is an endophytic bacterium isolated from a surface-sterilized Citrus sinensis branch. Ecological and biotechnological aspects of this bacterium, such as the genes involved in its association with the host plant and the primary oxidation of methanol, were annotated in the draft genome.
Related JoVE Video
Draft Genome Sequence of Bacillus stratosphericus LAMA 585, Isolated from the Atlantic Deep Sea.
Genome Announc
PUBLISHED: 05-04-2013
Show Abstract
Hide Abstract
Bacillus stratosphericus LAMA 585 was isolated from the Mid-Atlantic-Ridge seafloor (5,500-m depth). This bacterium presents the capacity for cellulase, xylanase, and lipase production when growing aerobically in marine-broth media. Genes involved in the tolerance of oligotrophic and extreme conditions and prospection of biotechnological products were annotated in the draft genome (3.7 Mb).
Related JoVE Video
Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean.
Springerplus
PUBLISHED: 01-13-2013
Show Abstract
Hide Abstract
The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.
Related JoVE Video
Endophytic Methylobacterium extorquens expresses a heterologous ?-1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa.
World J. Microbiol. Biotechnol.
PUBLISHED: 07-26-2011
Show Abstract
Hide Abstract
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.