JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between weather, spring snow cover, lemming abundance, and spatiotemporal variations in Arctic-breeding birds.
Related JoVE Video
Estimating Allee dynamics before they can be observed: polar bears as a case study.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.
Related JoVE Video
Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations.
Glob Chang Biol
PUBLISHED: 07-20-2013
Show Abstract
Hide Abstract
Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.
Related JoVE Video
Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century.
Glob Chang Biol
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
The primary habitat of polar bears is sea ice, but in Western Hudson Bay (WH), the seasonal ice cycle forces polar bears ashore each summer. Survival of bears on land in WH is correlated with breakup and the ice-free season length, and studies suggest that exceeding thresholds in these variables will lead to large declines in the WH population. To estimate when anthropogenic warming may have progressed sufficiently to threaten the persistence of polar bears in WH, we predict changes in the ice cycle and the sea ice concentration (SIC) in spring (the primary feeding period of polar bears) with a high-resolution sea ice-ocean model and warming forced with 21st century IPCC greenhouse gas (GHG) emission scenarios: B1 (low), A1B (medium), and A2 (high). We define critical years for polar bears based on proposed thresholds in breakup and ice-free season and we assess when ice-cycle conditions cross these thresholds. In the three scenarios, critical years occur more commonly after 2050. From 2001 to 2050, 2 critical years occur under B1 and A2, and 4 under A1B; from 2051 to 2100, 8 critical years occur under B1, 35 under A1B and 41 under A2. Spring SIC in WH is high (>90%) in all three scenarios between 2001 and 2050, but declines rapidly after 2050 in A1B and A2. From 2090 to 2100, the mean spring SIC is 84 (±7)% in B1, 56 (±26)% in A1B and 20 (±13)% in A2. Our predictions suggest that the habitat of polar bears in WH will deteriorate in the 21st century. Ice predictions in A1B and A2 suggest that the polar bear population may struggle to persist after ca. 2050. Predictions under B1 suggest that reducing GHG emissions could allow polar bears to persist in WH throughout the 21st century.
Related JoVE Video
Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs.
Environ. Sci. Technol.
PUBLISHED: 04-03-2013
Show Abstract
Hide Abstract
We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ?1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.
Related JoVE Video
Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics.
J Anim Ecol
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
Understanding how seasonal environmental conditions affect the timing and distribution of synchronized animal movement patterns is a central issue in animal ecology. Migration, a behavioural adaptation to seasonal environmental fluctuations, is a fundamental part of the life history of numerous species. However, global climate change can alter the spatiotemporal distribution of resources and thus affect the seasonal movement patterns of migratory animals. We examined sea ice dynamics relative to migration patterns and seasonal geographical fidelity of an Arctic marine predator, the polar bear (Ursus maritimus). Polar bear movement patterns were quantified using satellite-linked telemetry data collected from collars deployed between 1991-1997 and 2004-2009. We showed that specific sea ice characteristics can predict the timing of seasonal polar bear migration on and off terrestrial refugia. In addition, fidelity to specific onshore regions during the ice-free period was predicted by the spatial pattern of sea ice break-up but not by the timing of break-up. The timing of migration showed a trend towards earlier arrival of polar bears on shore and later departure from land, which has been driven by climate-induced declines in the availability of sea ice. Changes to the timing of migration have resulted in polar bears spending progressively longer periods of time on land without access to sea ice and their marine mammal prey. The links between increased atmospheric temperatures, sea ice dynamics, and the migratory behaviour of an ice-dependent species emphasizes the importance of quantifying and monitoring relationships between migratory wildlife and environmental cues that may be altered by climate change.
Related JoVE Video
Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The area traversed in pursuit of resources defines the size of an animals home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.
Related JoVE Video
Subpopulation structure of caribou (Rangifer tarandus L.) in arctic and subarctic Canada.
Ecol Appl
PUBLISHED: 09-24-2011
Show Abstract
Hide Abstract
Effective management and conservation of species, subspecies, or ecotypes require an understanding of how populations are structured in space. We used satellite-tracking locations and hierarchical and fuzzy clustering to quantify subpopulations within the behaviorally different barren-ground caribou (Rangifer tarandus groenlandicus), Dolphin and Union island caribou (R. t. groenlandicus x pearyi), and boreal (R. t. caribou) caribou ecotypes in the Northwest Territories and Nunavut, Canada. Using a novel approach, we verified that the previously recognized Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust and that the Queen Maude Gulf and Wager Bay barren-ground subpopulations were organized as individuals. Dolphin and Union island and boreal caribou formed one and two distinct subpopulation, respectively, and were organized as individuals. Robust subpopulations were structured by strong annual spatial affiliation among females; subpopulations organized as individuals were structured by migratory connectivity, barriers to movement, and/or habitat discontinuity. One barren-ground subpopulation used two calving grounds, and one calving ground was used by two barren-ground subpopulations, indicating that these caribou cannot be reliably assigned to subpopulations solely by calving-ground use. They should be classified by annual spatial affiliation among females. Annual-range size and path lengths varied significantly among ecotypes, including mountain woodland caribou (R. t. caribou), and reflected behavioral differences. An east-west cline in annual-range sizes and path lengths among migratory barren-ground subpopulations likely reflected differences in subpopulation size and habitat conditions and further supported the subpopulation structure identified.
Related JoVE Video
Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.
Environ. Sci. Technol.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 ?g g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 ?g g(-1)). On the basis of ?(15)N signatures in hair, in conjunction with published ?(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ? 4.7 and ? 4.0 trophic levels long, whereas in WHB they are only ? 3.6 and ? 3.3 trophic levels long. Furthermore, the more depleted ?(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ? 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western coast of HB.
Related JoVE Video
Milk composition in free-ranging polar bears (Ursus maritimus) as a model for captive rearing milk formula.
Zoo Biol.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
The goals of this study were to have an improved understanding of milk composition and to help create a suitable milk formula for cubs raised in captivity. Milk samples were evaluated for fat, fatty acids, carbohydrate, vitamin D(3), 25(OH)D(3), vitamin A (retinol), vitamin E (?-tocopherol), protein, and amino acids. Total lipids in milk did not differ for cubs (mean ± SEM = 26.60 ± 1.88 g/100 ml vs. yearlings 27.80 ± 2.20 g/100 ml). Milk lipids were of 23.6% saturated fatty acid for cubs and 22.4% for yearlings. Milk consumed by cubs and yearlings contained 43.8 and 42.0% mono-unsaturated fatty acids and 23.4 and 21.9% polyunsaturated fatty acids, respectively. Carbohydrate content was higher in milk for cubs (4.60 ± 0.64 g/100 ml) than for yearlings (2.60 ± 0.40 g/100 ml). Vitamin D(3) concentration of milk was 18.40 ± 5.00 ng/ml in early lactation compared with 7.60 ± 2.00 ng/ml for mid-lactation. 25(OH)D(3) was lower in milk consumed by cubs (162.00 ± 6.70 pg/ml) than in milk consumed by yearlings (205.00 ± 45.70 pg/ml). Vitamin A concentrations were 0.06 ± 0.01 and 0.03 ± 0.01 µg/ml for cubs and yearlings, respectively. Vitamin E was higher in milk consumed by cubs (20.16 ± 4.46 µg/ml) than by yearlings (7.30 ± 1.50 µg/ml). Protein content did not differ in milk available to cubs (11.40 ± 0.80 g/100 ml compared with milk for yearlings 11.80 ± 0.40 g/100 ml). Taurine was the most abundant free amino acid at 3,165.90 ± 192.90 nmol/ml (0.04% as fed basis).
Related JoVE Video
Predicting climate change impacts on polar bear litter size.
Nat Commun
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ?28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40-73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55-100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22-67% and 44-100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population.
Related JoVE Video
Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Arctic.
Oecologia
PUBLISHED: 11-23-2010
Show Abstract
Hide Abstract
Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (?(13)C, ?(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from ?(15)N measurements) and individual movement. The range of ?(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population.
Related JoVE Video
The impact of conservation on the status of the worlds vertebrates.
Michael Hoffmann, Craig Hilton-Taylor, Ariadne Angulo, Monika Böhm, Thomas M Brooks, Stuart H M Butchart, Kent E Carpenter, Janice Chanson, Ben Collen, Neil A Cox, William R T Darwall, Nicholas K Dulvy, Lucy R Harrison, Vineet Katariya, Caroline M Pollock, Suhel Quader, Nadia I Richman, Ana S L Rodrigues, Marcelo F Tognelli, Jean-Christophe Vié, John M Aguiar, David J Allen, Gerald R Allen, Giovanni Amori, Natalia B Ananjeva, Franco Andreone, Paul Andrew, Aida Luz Aquino Ortiz, Jonathan E M Baillie, Ricardo Baldi, Ben D Bell, S D Biju, Jeremy P Bird, Patricia Black-Decima, J Julian Blanc, Federico Bolaños, Wilmar Bolivar-G, Ian J Burfield, James A Burton, David R Capper, Fernando Castro, Gianluca Catullo, Rachel D Cavanagh, Alan Channing, Ning Labbish Chao, Anna M Chenery, Federica Chiozza, Viola Clausnitzer, Nigel J Collar, Leah C Collett, Bruce B Collette, Claudia F Cortez Fernandez, Matthew T Craig, Michael J Crosby, Neil Cumberlidge, Annabelle Cuttelod, Andrew E Derocher, Arvin C Diesmos, John S Donaldson, J W Duckworth, Guy Dutson, S K Dutta, Richard H Emslie, Aljos Farjon, Sarah Fowler, Jörg Freyhof, David L Garshelis, Justin Gerlach, David J Gower, Tandora D Grant, Geoffrey A Hammerson, Richard B Harris, Lawrence R Heaney, S Blair Hedges, Jean-Marc Hero, Baz Hughes, Syed Ainul Hussain, Javier Icochea M, Robert F Inger, Nobuo Ishii, Djoko T Iskandar, Richard K B Jenkins, Yoshio Kaneko, Maurice Kottelat, Kit M Kovacs, Sergius L Kuzmin, Enrique La Marca, John F Lamoreux, Michael W N Lau, Esteban O Lavilla, Kristin Leus, Rebecca L Lewison, Gabriela Lichtenstein, Suzanne R Livingstone, Vimoksalehi Lukoschek, David P Mallon, Philip J K McGowan, Anna McIvor, Patricia D Moehlman, Sanjay Molur, Antonio Muñoz Alonso, John A Musick, Kristin Nowell, Ronald A Nussbaum, Wanda Olech, Nikolay L Orlov, Theodore J Papenfuss, Gabriela Parra-Olea, William F Perrin, Beth A Polidoro, Mohammad Pourkazemi, Paul A Racey, James S Ragle, Mala Ram, Galen Rathbun, Robert P Reynolds, Anders G J Rhodin, Stephen J Richards, Lily O Rodriguez, Santiago R Ron, Carlo Rondinini, Anthony B Rylands, Yvonne Sadovy de Mitcheson, Jonnell C Sanciangco, Kate L Sanders, Georgina Santos-Barrera, Jan Schipper, Caryn Self-Sullivan, Yichuan Shi, Alan Shoemaker, Frederick T Short, Claudio Sillero-Zubiri, Débora L Silvano, Kevin G Smith, Andrew T Smith, Jos Snoeks, Alison J Stattersfield, Andrew J Symes, Andrew B Taber, Bibhab K Talukdar, Helen J Temple, Rob Timmins, Joseph A Tobias, Katerina Tsytsulina, Denis Tweddle, Carmen Ubeda, Sarah V Valenti, Peter Paul van Dijk, Liza M Veiga, Alberto Veloso, David C Wege, Mark Wilkinson, Elizabeth A Williamson, Feng Xie, Bruce E Young, H Resit Akçakaya, Leon Bennun, Tim M Blackburn, Luigi Boitani, Holly T Dublin, Gustavo A B da Fonseca, Claude Gascon, Thomas E Lacher, Georgina M Mace, Susan A Mainka, Jeffery A McNeely, Russell A Mittermeier, Gordon McGregor Reid, Jon Paul Rodríguez, Andrew A Rosenberg, Michael J Samways, Jane Smart, Bruce A Stein, Simon N Stuart.
Science
PUBLISHED: 10-26-2010
Show Abstract
Hide Abstract
Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the worlds vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species.
Related JoVE Video
Serosurvey for Trichinella in polar bears (Ursus maritimus) from Svalbard and the Barents Sea.
Vet. Parasitol.
PUBLISHED: 05-19-2010
Show Abstract
Hide Abstract
Blood samples of live-caught polar bears (Ursus maritimus) from Svalbard collected 1991-2000 (Period 1) and 2006-2008 (Period 2) and from the pack ice of the Barents Sea collected in Period 1, were assayed for antibodies against Trichinella spp. by ELISA. Of 54 cubs-of-the-year included in the Period 1 sample, 53 were seronegative, indicating that exposure to Trichinella infected meat is uncommon during the first months of life for polar bears in the Svalbard region. Of 30 mother-offspring pairs, 18 mothers were seropositive with seronegative offspring (n=27), suggesting (1) that maternal antibodies had dropped to levels below detection limit by the time of capture in April (offspring approximately 4 months old), and (2) supporting experimental studies in other animal models showing that vertical transmission of Trichinella spp. is uncommon. Bear 1 year and older had higher prevalence in Svalbard (78%) than in the Barents Sea (51%). There was no temporal change in prevalence for bears from Svalbard during the time between the two periods. The prevalence increased with age in both sexes. A positive correlation was found between anti-Toxoplasma gondii and anti-Trichinella spp. antibodies.
Related JoVE Video
A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears.
J. Exp. Biol.
PUBLISHED: 07-21-2009
Show Abstract
Hide Abstract
Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.
Related JoVE Video
Does taurine deficiency cause metabolic bone disease and rickets in polar bear cubs raised in captivity?
Adv. Exp. Med. Biol.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
Rickets and fractures have been reported in captive polar bears. Taurine (TAU) is key for the conjugation of ursodeoxycholic acid (UDCA), a bile acid unique to bears. Since TAU-conjugated UDCA optimizes fat and fat-soluble vitamin absorption, we asked if TAU deficiency could cause vitamin D malabsorption and lead to metabolic bone disease in captive polar bears. We measured TAU levels in plasma (P) and whole blood (WB) from captive and free-ranging cubs and adults, and vitamin D3 and TAU concentrations in milk samples from lactating sows. Plasma and WB TAU levels were significantly higher in cubs vs captive and free-ranging adult bears. Vitamin D in polar bear milk was 649.2 +/- 569.2 IU/L, similar to that found in formula. The amount of TAU in polar bear milk is 3166.4 +/- 771 nmol/ml, 26-fold higher than in formula. Levels of vitamin D in bear milk and formula as well as in plasma do not indicate classical nutritional vitamin D deficiency. Higher dietary intake of TAU by free-ranging cubs may influence bile acid conjugation and improve vitamin D absorption.
Related JoVE Video
What are the toxicological effects of mercury in Arctic biota?
Sci. Total Environ.
Show Abstract
Hide Abstract
This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their tissues and organs that are believed to exceed thresholds for biological effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear to be one of the most vulnerable groups, with high concentrations of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concentrations in mercury in some biota in Arctic Canada and Greenland is therefore a concern with respect to ecosystem health.
Related JoVE Video
Perfluoroalkyl substances in polar bear mother-cub pairs: a comparative study based on plasma levels from 1998 and 2008.
Environ Int
Show Abstract
Hide Abstract
Perfluoroalkyl substances (PFASs) are protein-binding blood-accumulating contaminants that may have detrimental toxicological effects on the early phases of mammalian development. To enable an evaluation of the potential health risks of PFAS exposure for polar bears (Ursus maritimus), an exposure assessment was made by examining plasma levels of PFASs in polar bear mothers in relation to their suckling cubs-of-the-year (~4 months old). Samples were collected at Svalbard in 1998 and 2008, and we investigated the between-year differences in levels of PFASs. Seven perfluorinated carboxylic acids (??PFCAs: PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA) and two perfluorinated sulfonic acids (??PFSAs: PFHxS and PFOS) were detected in the majority of the mothers and cubs from both years. In mothers and cubs, most PFCAs were detected in higher concentrations in 2008 than in 1998. On the contrary, levels of PFOS were lower in 2008 than in 1998, while levels of PFHxS did not differ between the two sampling years. PFOS was the dominating compound in mothers and cubs both in 1998 and in 2008. Concentration of PFHpA did not differ between mothers and cubs, while concentrations of PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFHxS, and PFOS were higher in mothers than in their cubs. Except from PFHpA, all compounds correlated significantly between mothers and their cubs. The mean cub to mother ratios ranged from 0.15 for PFNA to 1.69 for PFHpA. On average (mean±standard error of mean), the levels of ??PFCAs and ??PFSAs in cubs were 0.24±0.01 and 0.22±0.01 times the levels in their mothers, respectively. Although maternal transfer appears to be a substantial source of exposure for the cubs, the low cub to mother ratios indicate that maternal transfer of PFASs in polar bears is relatively low in comparison with hydrophobic contaminants (e.g. PCBs). Because the level of several PFASs in mothers and cubs from both sampling years exceeded the levels associated with health effects in humans, our findings raise concern on the potential health effects of PFASs in polar bears from Svalbard. Effort should be made to examine the potential health effects of PFASs in polar bears.
Related JoVE Video
Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea.
PLoS ONE
Show Abstract
Hide Abstract
Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n=650) and hunting attempts on ringed seal (Pusa hispida) lairs (n=1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985-2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation.
Related JoVE Video
PCBs and OH-PCBs in polar bear mother-cub pairs: a comparative study based on plasma levels in 1998 and 2008.
Sci. Total Environ.
Show Abstract
Hide Abstract
The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n=26) and their 4 months old cubs-of-the-year (n=38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of ?(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560 ± 1500 ng/g lw) and ?(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of ?(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and ?(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. ?(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, ?(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.