JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share.
Hum. Mol. Genet.
PUBLISHED: 09-08-2014
Show Abstract
Hide Abstract
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.
Related JoVE Video
Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease.
Nat. Genet.
PUBLISHED: 03-13-2014
Show Abstract
Hide Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in EoE cases of European ancestry and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replicating association of the 5q22 locus (meta-analysis P=1.9×10(-16)), we identified an association at 2p23 spanning CAPN14 (P=2.5×10(-10)). CAPN14 was specifically expressed in the esophagus, was dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to interleukin (IL)-13, and was located in an epigenetic hotspot modified by IL-13. Genes neighboring the top 208 EoE-associated sequence variants were enriched for esophageal expression, and multiple loci for allergic sensitization were associated with EoE susceptibility (4.8×10(-2)
Related JoVE Video
The struggle to find reliable results in exome sequencing data: filtering out Mendelian errors.
Front Genet
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Next Generation Sequencing studies generate a large quantity of genetic data in a relatively cost and time efficient manner and provide an unprecedented opportunity to identify candidate causative variants that lead to disease phenotypes. A challenge to these studies is the generation of sequencing artifacts by current technologies. To identify and characterize the properties that distinguish false positive variants from true variants, we sequenced a child and both parents (one trio) using DNA isolated from three sources (blood, buccal cells, and saliva). The trio strategy allowed us to identify variants in the proband that could not have been inherited from the parents (Mendelian errors) and would most likely indicate sequencing artifacts. Quality control measurements were examined and three measurements were found to identify the greatest number of Mendelian errors. These included read depth, genotype quality score, and alternate allele ratio. Filtering the variants on these measurements removed ~95% of the Mendelian errors while retaining 80% of the called variants. These filters were applied independently. After filtering, the concordance between identical samples isolated from different sources was 99.99% as compared to 87% before filtering. This high concordance suggests that different sources of DNA can be used in trio studies without affecting the ability to identify causative polymorphisms. To facilitate analysis of next generation sequencing data, we developed the Cincinnati Analytical Suite for Sequencing Informatics (CASSI) to store sequencing files, metadata (eg. relatedness information), file versioning, data filtering, variant annotation, and identify candidate causative polymorphisms that follow either de novo, rare recessive homozygous or compound heterozygous inheritance models. We conclude the data cleaning process improves the signal to noise ratio in terms of variants and facilitates the identification of candidate disease causative polymorphisms.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.