JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
Acta Biomater
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
We present a systematic study for investigating the role of exposed hydroxyapatite (HA) nanoparticles in influencing surface characteristics and mouse pre-osteoblastic MC3T3-E1 cell behavior using nanocomposites prepared by photo-crosslinking poly(?-caprolactone) diacrylate (PCLDA) with HA. PCLDA530 and PCLDA2000 synthesized from poly(?-caprolactone) diol precursors with nominal molecular weights of 530 and 2000 g mol(-1) were used as the polymer matrices. Crosslinked PCLDA530 was amorphous while crosslinked PCLDA2000 was semi-crystalline. Crosslinked PCLDA/HA composites with different compositions of HA (10%, 20% and 30%) as well as crosslinked PCLDAs were characterized in terms of their composition-dependent physicochemical properties. The tensile, compressive and shear moduli were greatly enhanced by incorporating HA nanoparticles with the polymer matrices. The disk surfaces of original crosslinked PCLDA/HA nanocomposites were removed by cutting using a blade to expose HA nanoparticles that were embedded in the polymer substrates. The composition of HA was much higher on the cut surface, particularly in semi-crystalline crosslinked PCLDA2000/HA nanocomposites. The surface characteristics of original and cut crosslinked PCLDA/HA nanocomposites were compared and correlated with cell behavior on these nanocomposites. MC3T3-E1 cell attachment, proliferation and differentiation were significantly enhanced when the HA composition was increased in original crosslinked PCLDA/HA nanocomposites due to more bioactive HA, higher surface stiffness and rougher topography. More exposed HA on the surface of cut semi-crystalline PCLDA2000/HA nanocomposites resulted in improved hydrophilicity and significantly better MC3T3 cell attachment, proliferation and differentiation compared with the original surfaces. This study suggests that HA nanoparticles may not be fully exploited in polymer/HA nanocomposites where the top polymer surface covers the particles. The removal of this polymer layer can generate more desirable surfaces and osteoconductivity for bone repair and regeneration.
Related JoVE Video
Differential chlorate inhibition of Chaetomium globosum germination, hyphal growth, and perithecia synthesis.
Mycopathologia
Show Abstract
Hide Abstract
Chaetomium globosum Kunze:Fr is a dermatophytic, dematiaceous fungus that is ubiquitous in soils, grows readily on cellulolytic materials, and is commonly found on water-damaged building materials. Chlorate affects nitrogen metabolism in fungi and is used to study compatibility among anamorphic fungi by inducing nit mutants. The effect of chlorate toxicity on C. globosum was investigated by amending a modified malt extract agar (MEA), oat agar, and carboxymethyl cellulose agar (CMC) with various levels of potassium chlorate (KClO(3)). C. globosum perithecia production was almost completely inhibited (90-100 %) at low levels of KClO(3) (0.1 mM) in amended MEA. Inhibition of perithecia production was also observed on oat agar and CMC at 1 and 10 mM, respectively. However, hyphal growth in MEA was only inhibited 20 % by 0.1-100 mM KClO(3) concentrations. Hyphal growth was never completely inhibited at the highest levels tested (200 mM). Higher levels of KClO(3) were needed on gypsum board to inhibit perithecia synthesis. In additional experiments, KClO(3) did not inhibit C. globosum, Fusarium oxysporum, Aspergillus niger, Penicillum expansum, and airborne fungal spore germination. The various fungal spores were not inhibited by KClO(3) at 1-100 mM levels. These results suggest that C. globosum perithecia synthesis is more sensitive to chlorate toxicity than are hyphal growth and spore germination. This research provides basic information that furthers our understanding about perithecia formation and may help in developing control methods for fungal growth on building materials.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.