JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2.
Brain
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
We characterize a consanguineous Egyptian family with an autosomal recessively inherited familial cortical myoclonic tremor and epilepsy. We used multipoint linkage analysis to map the causative mutation to a 12.7 megabase interval within 1q31.3-q32.2 with a log of odds score of 3.6. For further investigation of the linked region in an efficient and unbiased manner, we performed exome sequencing. Within the suspected region we identified a homozygous single base pair deletion (c.503_503delG) leading to a frameshift in the coding region of the sixth exon of CNTN2 alias TAG-1 (p.Trp168fs), which segregated in the respective family. Many studies point towards an important role of the CNTN2 product contactin 2 in neuronal excitability. Contactin 2, a glycosylphosphatidylinositol-anchored neuronal membrane protein, and another transmembrane protein called contactin associated protein-like 2 (CNTNAP2 alias CASPR2) are together necessary to maintain voltage-gated potassium channels at the juxtaparanodal region. CNTN2 knockout mice were previously reported to suffer from spontaneous seizures and mutations in the CNTNAP2 gene have been described to cause epilepsy in humans. To further delineate the role of CNTN2 in patients with epilepsy, we sequenced the coding exons in 189 Caucasian patients with epilepsy. No recessive mutation was detected and heterozygote carriers of rare CNTN2 variants do not seem to be predisposed to epilepsy. Given the severity of the mutation and the proposed function of the gene, we consider this mutation as the most likely cause for cortical myoclonic tremor and epilepsy in this family.
Related JoVE Video
Assessment of the genomic variation in a cattle population by re-sequencing of key animals at low to medium coverage.
BMC Genomics
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Genome- and population-wide re-sequencing would allow for most efficient detection of causal trait variants. However, despite a strong decrease of costs for next-generation sequencing in the last few years, re-sequencing of large numbers of individuals is not yet affordable. We therefore resorted to re-sequencing of a limited number of bovine animals selected to explain a major proportion of the populations genomic variation, so called key animals, in order to provide a catalogue of functional variants and a substrate for population- and genome-wide imputation of variable sites.
Related JoVE Video
A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease.
Am. J. Hum. Genet.
PUBLISHED: 05-08-2011
Show Abstract
Hide Abstract
To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive. By screening additional PD cases, we saw the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance in two further families with five and ten affected members, respectively. The mean age of onset in the affected individuals was 53 years. Genotyping showed that the shared haplotype extends across 65 kilobases around VPS35. Screening the entire VPS35 coding sequence in an additional 860 cases and 1014 controls revealed six further nonsynonymous missense variants. Three were only present in cases, two were only present in controls, and one was present in cases and controls. The familial mutation p.Asp620Asn and a further variant, c.1570C>T (p.Arg524Trp), detected in a sporadic PD case were predicted to be damaging by sequence-based and molecular-dynamics analyses. VPS35 is a component of the retromer complex and mediates retrograde transport between endosomes and the trans-Golgi network, and it has recently been found to be involved in Alzheimer disease.
Related JoVE Video
CpG-methylation regulates a class of Epstein-Barr virus promoters.
PLoS Pathog.
PUBLISHED: 05-25-2010
Show Abstract
Hide Abstract
DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBVs BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBVs lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to read DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing.
Related JoVE Video
Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery.
Genome Biol.
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
The majority of the 2 million bovine single nucleotide polymorphisms (SNPs) currently available in dbSNP have been identified in a single breed, Hereford cattle, during the bovine genome project. In an attempt to evaluate the variance of a second breed, we have produced a whole genome sequence at low coverage of a single Fleckvieh bull.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.