JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
On detecting incomplete soft or hard selective sweeps using haplotype structure.
Mol. Biol. Evol.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
We present a new haplotype-based statistic (nSL) for detecting both soft and hard sweeps in population genomic data from a single population. We compare our new method with classic single-population haplotype and site frequency spectrum (SFS)-based methods and show that it is more robust, particularly to recombination rate variation. However, all statistics show some sensitivity to the assumptions of the demographic model. Additionally, we show that nSL has at least as much power as other methods under a number of different selection scenarios, most notably in the cases of sweeps from standing variation and incomplete sweeps. This conclusion holds up under a variety of demographic models. In many aspects, our new method is similar to the iHS statistic; however, it is generally more robust and does not require a genetic map. To illustrate the utility of our new method, we apply it to HapMap3 data and show that in the Yoruban population, there is strong evidence of selection on genes relating to lipid metabolism. This observation could be related to the known differences in cholesterol levels, and lipid metabolism more generally, between African Americans and other populations. We propose that the underlying causes for the selection on these genes are pleiotropic effects relating to blood parasites rather than their role in lipid metabolism.
Related JoVE Video
Influenza virus drug resistance: a time-sampled population genetics perspective.
PLoS Genet.
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being positively selected. Results are interpreted in the light of Fisher's Geometric Model, allowing for a quantification of the increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host environments and novel selective pressures.
Related JoVE Video
Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud.
Dev. Cell
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Although development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term "mitosis-associated cell dispersal." Premitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; although one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis.
Related JoVE Video
Peptides presented by HLA class I molecules in the human thymus.
J Proteomics
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression.
Related JoVE Video
A scan for human-specific relaxation of negative selection reveals unexpected polymorphism in proteasome genes.
Mol. Biol. Evol.
PUBLISHED: 05-22-2013
Show Abstract
Hide Abstract
Environmental or genomic changes during evolution can relax negative selection pressure on specific loci, permitting high frequency polymorphisms at previously conserved sites. Here, we jointly analyze population genomic and comparative genomic data to search for functional processes showing relaxed negative selection specifically in the human lineage, whereas remaining evolutionarily conserved in other mammals. Consistent with previous studies, we find that olfactory receptor genes display such a signature of relaxation in humans. Intriguingly, proteasome genes also show a prominent signal of human-specific relaxation: multiple proteasome subunits, including four members of the catalytic core particle, contain high frequency nonsynonymous polymorphisms at sites conserved across mammals. Chimpanzee proteasome genes do not display a similar trend. Human proteasome genes also bear no evidence of recent positive or balancing selection. These results suggest human-specific relaxation of negative selection in proteasome subunits; the exact biological causes, however, remain unknown.
Related JoVE Video
Microarray and deep sequencing cross-platform analysis of the mirRNome and isomiR variation in response to epidermal growth factor.
BMC Genomics
PUBLISHED: 05-20-2013
Show Abstract
Hide Abstract
Epidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway. miRNAs have emerged as major players in the complex networks of gene regulation, and cancer miRNA expression studies have evidenced a direct involvement of miRNAs in cancer progression.
Related JoVE Video
A membrane-associated ?-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells.
Development
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
The maintenance of pluripotency in mouse embryonic stem cells (mESCs) relies on the activity of a transcriptional network that is fuelled by the activity of three transcription factors (Nanog, Oct4 and Sox2) and balanced by the repressive activity of Tcf3. Extracellular signals modulate the activity of the network and regulate the differentiation capacity of the cells. Wnt/?-catenin signaling has emerged as a significant potentiator of pluripotency: increases in the levels of ?-catenin regulate the activity of Oct4 and Nanog, and enhance pluripotency. A recent report shows that ?-catenin achieves some of these effects by modulating the activity of Tcf3, and that this effect does not require its transcriptional activation domain. Here, we show that during self-renewal there is negligible transcriptional activity of ?-catenin and that this is due to its tight association with membranes, where we find it in a complex with Oct4 and E-cadherin. Differentiation triggers a burst of Wnt/?-catenin transcriptional activity that coincides with the disassembly of the complex. Our results establish that ?-catenin, but not its transcriptional activity, is central to pluripotency acting through a ?-catenin/Oct4 complex.
Related JoVE Video
microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers.
Oncol. Rep.
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
Biomarkers that can facilitate disease detection, staging and prediction of outcome are highly desirable to improve survival and to help determine optimized treatment for colorectal cancer patients. microRNAs (miRNAs) are small non-coding RNAs that play a crucial role in gene regulatory networks. The deregulation of miRNA expression has been found in several types of cancer and may represent a novel class of cancer biomarkers. Our aim was to determine the miRNA signature of stage III colorectal cancer (CRC) tumors and to identify potential circulating miRNAs that may represent non-invasive biomarkers in CRC patients. Genome-wide microarray analysis of miRNA expression was performed on 12 paired tumor and non-tumor formalin-fixed paraffin-embedded tissues from stage III CRC patients. A selection of differentially overexpressed miRNAs was validated by quantitative real-time polymerase chain reaction (qRT-PCR) and determined in the serum of a set of 56 individuals (30 stage III CRC patients and 26 healthy individuals). Using 1.5-fold expression difference as a cut-off level, 43 miRNAs were identified as differentially expressed in tumor versus normal tissue. Using reverse transcription and qRT-PCR, 11 miRNAs (miR-135b, miR-141, miR-18a, miR-20a, miR-21, miR-224, miR-29a, miR-31, miR-34a, miR-92a and miR-96) were confirmed as significantly overexpressed in tumor samples when compared with normal samples. We were able to detect 9 of these 11 miRNAs in serum samples from CRC patients and healthy individuals. Serum levels of miR-18a and miR-29a were significantly higher in CRC patients when compared to levels in the controls (p<0.05). In conclusion, this study identified a substantial number of miRNAs which were differentially expressed in stage III colorectal tumors. Moreover, the findings provide relevant information concerning overexpressed tumoral miRNAs as potential circulating biomarkers and highlight serum miR-18a and miR-29a as promising biomarkers for the screening and monitoring of CRC patients.
Related JoVE Video
Cost-effectiveness of rifampin for 4 months and isoniazid for 6 months in the treatment of tuberculosis infection.
Respir Med
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
To assess the cost-effectiveness ratio of rifampin for 4 months and isoniazid for 6 months in contacts with latent tuberculosis infection.
Related JoVE Video
Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
Related JoVE Video
Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.
PLoS Genet.
PUBLISHED: 04-27-2011
Show Abstract
Hide Abstract
Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the hypothesis that some susceptibility alleles for autoimmune diseases may be maintained in human population due to past selective processes.
Related JoVE Video
Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis.
BMC Genomics
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer.
Related JoVE Video
Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo.
Blood
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-?1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation.
Related JoVE Video
A sensitive and bright single-cell resolution live imaging reporter of Wnt/ß-catenin signaling in the mouse.
BMC Dev. Biol.
PUBLISHED: 09-21-2010
Show Abstract
Hide Abstract
Understanding the dynamic cellular behaviors and underlying molecular mechanisms that drive morphogenesis is an ongoing challenge in biology. Live imaging provides the necessary methodology to unravel the synergistic and stereotypical cell and molecular events that shape the embryo. Genetically-encoded reporters represent an essential tool for live imaging. Reporter strains can be engineered by placing cis-regulatory elements of interest to direct the expression of a desired reporter gene. In the case of canonical Wnt signaling, also referred to as Wnt/?-catenin signaling, since the downstream transcriptional response is well understood, reporters can be designed that reflect sites of active Wnt signaling, as opposed to sites of gene transcription, as is the case with many fluorescent reporters. However, even though several transgenic Wnt/?-catenin reporter strains have been generated, to date, none provides the single-cell resolution favored for live imaging studies.
Related JoVE Video
Imaging mouse development with confocal time-lapse microscopy.
Meth. Enzymol.
PUBLISHED: 08-10-2010
Show Abstract
Hide Abstract
The gene expression, signaling, and cellular dynamics driving mouse embryo development have emerged through embryology and genetic studies. However, since mouse development is a temporally regulated three-dimensional process, any insight needs to be placed in this context of real-time visualization. Live imaging using genetically encoded fluorescent protein reporters is pushing the envelope of our understanding by uncovering unprecedented insights into mouse development and leading to the formulation of quantitative accurate models.
Related JoVE Video
Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo.
Cell Adh Migr
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
Multicellular organisms arise from the generation of different cell types and the organization of cells into tissues and organs. Cells of metazoa display two main phenotypes, the ancestral epithelial state and the recent mesenchymal derivative. Epithelial cells are usually stationary and reside in two-dimensional sheets. By contrast mesenchymal cells are loosely packed and can move to new positions, thereby providing a vehicle for cell rearrangement, dispersal and novel cell-cell interactions. Transitions between epithelial and mesenchymal states drive key morphogenetic events in the early vertebrate embryo, including gastrulation, germ layer formation and somitogenesis. The cell behaviors and molecular mechanisms promoting transitions between these two states in the early mouse embryo are discussed in this review.
Related JoVE Video
Effect of allergen-specific immunotherapy with purified Alt a1 on AMP responsiveness, exhaled nitric oxide and exhaled breath condensate pH: a randomized double blind study.
Allergy Asthma Clin Immunol
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
Little information is available on the effect of allergen-specific immunotherapy on airway responsiveness and markers in exhaled air. The aims of this study were to assess the safety of immunotherapy with purified natural Alt a1 and its effect on airway responsiveness to direct and indirect bronchoconstrictor agents and markers in exhaled air.
Related JoVE Video
MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation.
PLoS ONE
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis.
Related JoVE Video
A natural history of FUT2 polymorphism in humans.
Mol. Biol. Evol.
PUBLISHED: 06-01-2009
Show Abstract
Hide Abstract
Because pathogens are powerful selective agents, host-cell surface molecules used by pathogens as identification signals can reveal the signature of selection. Most of them are oligosaccharides, synthesized by glycosyltransferases. One known example is balancing selection shaping ABO evolution as a consequence of both, A and B antigens being recognized as receptors by some pathogens, and anti-A and/or anti-B natural antibodies produced by hosts conferring protection against the numerous infectious agents expressing A and B motifs. These antigens can also be found in tissues other than blood if there is activity of another enzyme, FUT2, a fucosyltransferase responsible for ABO biosynthesis in body fluids. Homozygotes for null variants at this locus present the nonsecretor phenotype (se), because they cannot express ABO antigens in secretions. Multiple independent mutations have been shown to be responsible for the nonsecretor phenotype, which is coexisting with the secretor phenotype in most populations. In this study, we have resequenced the coding region of FUT2 in 732 individuals from 39 worldwide human populations. We report a complex pattern of natural selection acting on the gene. Although frequencies of secretor and nonsecretor phenotypes are similar in different populations, the point mutations at the base of the phenotypes are different, with some variants showing a long history of balancing selection among Eurasian and African populations, and one recent variant showing a fast spread in East Asia, likely due to positive selection. Thus, a convergent phenotype composition has been achieved through different mutations with different evolutionary histories.
Related JoVE Video
A variant in the gene FUT9 is associated with susceptibility to placental malaria infection.
Hum. Mol. Genet.
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
Malaria in pregnancy forms a substantial part of the worldwide burden of malaria, with an estimated annual death toll of up to 200 000 infants, as well as increased maternal morbidity and mortality. Studies of genetic susceptibility to malaria have so far focused on infant malaria, with only a few studies investigating the genetic basis of placental malaria, focusing only on a limited number of candidate genes. The aim of this study therefore was to identify novel host genetic factors involved in placental malaria infection. To this end we carried out a nested case-control study on 180 Mozambican pregnant women with placental malaria infection, and 180 controls within an intervention trial of malaria prevention. We genotyped 880 SNPs in a set of 64 functionally related genes involved in glycosylation and innate immunity. A single nucleotide polymorphism (SNP) located in the gene FUT9, rs3811070, was significantly associated with placental malaria infection (odds ratio = 2.31, permutation P-value=0.028). Haplotypic analysis revealed a similarly strong association of a common haplotype of four SNPs including rs3811070. FUT9 codes for a fucosyl-transferase that is catalyzing the last step in the biosynthesis of the Lewis-x antigen, which forms part of the Lewis blood group-related antigens. These results therefore suggest an involvement of this antigen in the pathogenesis of placental malaria infection.
Related JoVE Video
Exhaled nitric oxide measurement is not useful for predicting the response to inhaled corticosteroids in subjects with chronic cough.
Chest
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
Increased concentrations of exhaled nitric oxide (ENO) are identified predominantly in subjects with chronic cough due to conditions that habitually respond well to therapy with inhaled corticosteroids (ICSs). The aim of this study was to assess the usefulness of ENO in predicting the response to ICS therapy in subjects with chronic cough and to determine the relationship between either methacholine or adenosine 5-monophosphate (AMP) responsiveness and the response to ICS therapy.
Related JoVE Video
Decay of linkage disequilibrium within genes across HGDP-CEPH human samples: most population isolates do not show increased LD.
BMC Genomics
PUBLISHED: 04-03-2009
Show Abstract
Hide Abstract
It is well known that the pattern of linkage disequilibrium varies between human populations, with remarkable geographical stratification. Indirect association studies routinely exploit linkage disequilibrium around genes, particularly in isolated populations where it is assumed to be higher. Here, we explore both the amount and the decay of linkage disequilibrium with physical distance along 211 gene regions, most of them related to complex diseases, across 39 HGDP-CEPH population samples, focusing particularly on the populations defined as isolates. Within each gene region and population we use r2 between all possible single nucleotide polymorphism (SNP) pairs as a measure of linkage disequilibrium and focus on the proportion of SNP pairs with r2 greater than 0.8.
Related JoVE Video
Human pseudogenes of the ABO family show a complex evolutionary dynamics and loss of function.
Glycobiology
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
The GT6 glycosyltransferases gene family, that includes the ABO blood group, shows a complex evolution pattern, with multiple events of gain and loss in different mammal species. In humans the ABO gene is considered the sole functional member although the O allele is null and is fixed in certain populations. Here, we analyze the human GT6 pseudogene sequences (Forssman, IGB3, GGTA1, GT6m5, GT6m6, and GT6m7) from an evolutionary perspective, by the study of (i) their diversity levels in populations through the resequencing analysis of European and African individuals; (ii) the interpopulation differentiation, with genotyping data from a survey of populations covering most of human genetic diversity; and (iii) the interespecific divergence, by the comparison of the human and some other primate species sequences. Since pseudogenes are expected to evolve under neutrality, they should show an evolutionary pattern different to that of functional sequences, with higher levels of diversity as well as a ratio of nonsynonymous to synonymous changes close to 1. We describe some departures from these expectations, including selection for inactivation in IGB3, GGTA1, and the interesting case of FS (Forssman) with a probable shift of its initial function in the primate lineage, which put it apart from a pure neutral pseudogene. These results suggest that some of these GT6 human pseudogenes may still be functional and retain some valuable unknown function in humans, in some case even at the protein level. The evolutionary analysis of all members of the GT6 family in humans allows an insight into their functional history, a process likely due to the interaction of the host glycans that they synthesize with pathogens; the past process that can be unraveled through the footprints left by natural selection in the extant genome variation.
Related JoVE Video
Birth defects associated with perturbations in preimplantation, gastrulation, and axis extension: from conjoined twinning to caudal dysgenesis.
Wiley Interdiscip Rev Dev Biol
Show Abstract
Hide Abstract
Congenital malformations represent approximately 3 in 100 live births within the human population. Understanding their pathogenesis and ultimately formulating effective treatments are underpinned by knowledge of the events and factors that regulate normal embryonic development. Studies in model organisms, primarily in the mouse, the most prominent genetically tractable mammalian model, have equipped us with a rudimentary understanding of mammalian development from early lineage commitment to morphogenetic processes. In this way, information provided by studies in the mouse can, in some cases, be used to draw parallels with other mammals, including human. Here, we provide an overview of our current understanding of the general sequence of developmental events from early cell cleavages to gastrulation and axis extension occurring in human embryos. We will also review some of the rare birth defects occurring at these stages, in particular those resulting in conjoined twinning or caudal dysgenesis.
Related JoVE Video
A dual function for canonical Wnt/?-catenin signaling in the developing mammalian cochlea.
Development
Show Abstract
Hide Abstract
The canonical Wnt/?-catenin signaling pathway is known to play crucial roles in organogenesis by regulating both proliferation and differentiation. In the inner ear, this pathway has been shown to regulate the size of the otic placode from which the cochlea will arise; however, direct activity of canonical Wnt signaling as well as its function during cochlear mechanosensory hair cell development had yet to be identified. Using TCF/Lef:H2B-GFP reporter mice and transfection of an independent TCF/Lef reporter construct, we describe the pattern of canonical Wnt activity in the developing mouse cochlea. We show that prior to terminal mitosis, canonical Wnt activity is high in early prosensory cells from which hair cells and support cells will differentiate, and activity becomes reduced as development progresses. Using an in vitro model we demonstrate that Wnt/?-catenin signaling regulates both proliferation and hair cell differentiation within the developing cochlear duct. Inhibition of Wnt/?-catenin signaling blocks proliferation during early mitotic phases of development and inhibits hair cell formation in the differentiating organ of Corti. Conversely, activation increases the number of hair cells that differentiate and induces proliferation in prosensory cells, causing an expansion of the Sox2-positive prosensory domain. We further demonstrate that the induced proliferation of Sox2-positive cells may be mediated by the cell cycle regulator cyclin D1. Lastly, we provide evidence that the mitotic Sox2-positive cells are competent to differentiate into hair cells. Combined, our data suggest that Wnt/?-catenin signaling has a dual function in cochlear development, regulating both proliferation and hair cell differentiation.
Related JoVE Video
Ustekinumab treatment of TNF antagonist-induced paradoxical psoriasis flare in a patient with psoriatic arthritis: case report and review.
Dermatology (Basel)
Show Abstract
Hide Abstract
Therapy with tumour necrosis factor ? (TNF) inhibitors can be associated with paradoxical reactions, namely the de novo development or flaring of conditions that usually respond to these therapeutic agents, such as arthritis, inflammatory bowel disease, sarcoidosis or psoriasis. They are considered a class effect of these drugs, and their incidence ranges from 1 to 5%, with paradoxical psoriasis (psoriasis vulgaris, palmoplantar pustulosis, scalp psoriasis and their combinations) being most frequently reported. Treatment of paradoxical psoriasis often requires withdrawal of the inducing drug and switching to another anti-TNF agent, but often this cannot avoid recurrence or persistence of the rash and/or loss of the therapeutic effect on the underlying condition.
Related JoVE Video
Interaction of Wnt3a, Msgn1 and Tbx6 in neural versus paraxial mesoderm lineage commitment and paraxial mesoderm differentiation in the mouse embryo.
Dev. Biol.
Show Abstract
Hide Abstract
Paraxial mesoderm is the tissue which gives rise to the skeletal muscles and vertebral column of the body. A gene regulatory network operating in the formation of paraxial mesoderm has been described. This network hinges on three key factors, Wnt3a, Msgn1 and Tbx6, each of which is critical for paraxial mesoderm formation, since absence of any one of these factors results in complete absence of posterior somites. In this study we determined and compared the spatial and temporal patterns of expression of Wnt3a, Msgn1 and Tbx6 at a time when paraxial mesoderm is being formed. Then, we performed a comparative characterization of mutants in Wnt3a, Msgn1 and Tbx6. To determine the epistatic relationship between these three genes, and begin to decipher the complex interplay between them, we analyzed double mutant embryos and compared their phenotypes to the single mutants. Through the analysis of molecular markers in mutants, our data support the bipotential nature of the progenitor cells for paraxial mesoderm and establish regulatory relationships between genes involved in the choice between neural and mesoderm fates.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.