JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-? for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages.
J. Immunol.
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
Tuberculosis, caused by the intracellular bacterium Mycobacterium tuberculosis, currently causes ?1.4 million deaths per year, and it therefore remains a leading global health problem. The immune response during tuberculosis remains incompletely understood, particularly regarding immune factors that are harmful rather than protective to the host. Overproduction of the type I IFN family of cytokines is associated with exacerbated tuberculosis in both mouse models and in humans, although the mechanisms by which type I IFN promotes disease are not well understood. We have investigated the effect of type I IFN on M. tuberculosis-infected macrophages and found that production of host-protective cytokines such as TNF-?, IL-12, and IL-1? is inhibited by exogenous type I IFN, whereas production of immunosuppressive IL-10 is promoted in an IL-27-independent manner. Furthermore, much of the ability of type I IFN to inhibit cytokine production was mediated by IL-10. Additionally, type I IFN compromised macrophage activation by the lymphoid immune response through severely disrupting responsiveness to IFN-?, including M. tuberculosis killing. These findings describe important mechanisms by which type I IFN inhibits the immune response during tuberculosis.
Related JoVE Video
TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.
J. Immunol.
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of mortality and morbidity worldwide, causing ? 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1, and TNF-?, as well as IFN-? and CD4(+) Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I IFN have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to M. tuberculosis in murine models through the negative regulation of key proinflammatory cytokines and the subsequent Th1 response. We show in this study, using a combination of transcriptomic analysis, genetics, and pharmacological inhibitors, that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I IFN production. The TPL-2-ERK1/2 signaling pathway regulated production by macrophages of several cytokines important in the immune response to M. tuberculosis as well as regulating induction of a large number of additional genes, many in a type I IFN-dependent manner. In the absence of TPL-2 in vivo, excess type I IFN promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I IFN may promote susceptibility to this important disease.
Related JoVE Video
Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus.
PLoS Pathog.
PUBLISHED: 02-14-2013
Show Abstract
Hide Abstract
Polymorphonuclear neutrophils (PMNs) are the first line of defense against microbial pathogens. In addition to their role in innate immunity, PMNs may also regulate events related to adaptive immunity. To investigate the influence of PMNs in the immune response during chronic bacterial infections, we explored the course of brucellosis in antibody PMN-depleted C57BL/6 mice and in neutropenic mutant Genista mouse model. We demonstrate that at later times of infection, Brucella abortus is killed more efficiently in the absence of PMNs than in their presence. The higher bacterial removal was concomitant to the: i) comparatively reduced spleen swelling; ii) augmented infiltration of epithelioid histiocytes corresponding to macrophages/dendritic cells (DCs); iii) higher recruitment of monocytes and monocyte/DCs phenotype; iv) significant activation of B and T lymphocytes, and v) increased levels of INF-? and negligible levels of IL4 indicating a balance of Th1 over Th2 response. These results reveal that PMNs have an unexpected influence in dampening the immune response against intracellular Brucella infection and strengthen the notion that PMNs actively participate in regulatory circuits shaping both innate and adaptive immunity.
Related JoVE Video
Brucella evasion of adaptive immunity.
Future Microbiol
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system.
Related JoVE Video
Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.
PLoS ONE
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+) T and CD8(+) T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.
Related JoVE Video
In Vivo Identification and Characterization of CD4(+) Cytotoxic T Cells Induced by Virulent Brucella abortus Infection.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
CD4(+) T cells display a variety of helper functions necessary for an efficient adaptive immune response against bacterial invaders. This work reports the in vivo identification and characterization of murine cytotoxic CD4(+) T cells (CD4(+) CTL) during Brucella abortus infection. These CD4(+) CTLs express granzyme B and exhibit immunophenotypic features consistent with fully differentiated T cells. They express CD25, CD44, CD62L ,CD43 molecules at their surface and produce IFN-?. Moreover, these cells express neither the co-stimulatory molecule CD27 nor the memory T cell marker CD127. We show here that CD4(+) CTLs are capable of cytolytic action against Brucella-infected antigen presenting cells (APC) but not against Mycobacterium-infected APC. Cytotoxic CD4(+) T cell population appears at early stages of the infection concomitantly with high levels of IFN-? and granzyme B expression. CD4(+) CTLs represent a so far uncharacterized immune cell sub-type triggered by early immune responses upon Brucella abortus infection.
Related JoVE Video
An evolutionary strategy for a stealthy intracellular Brucella pathogen.
Immunol. Rev.
PUBLISHED: 02-26-2011
Show Abstract
Hide Abstract
Brucella is an intracellular bacterial pathogen that causes abortion and infertility in mammals and leads to a debilitating febrile illness that can progress into a long lasting disease with severe complications in humans. Its virulence depends on survival and replication properties in host cells. In this review, we describe the stealthy strategy used by Brucella to escape recognition of the innate immunity and the means by which this bacterium evades intracellular destruction. We also discuss the development of adaptive immunity and its modulation during brucellosis that in course leads to chronic infections. Brucella has developed specific strategies to influence antigen presentation mediated by cells. There is increasing evidence that Brucella also modulates signaling events during host adaptive immune responses.
Related JoVE Video
Dysregulation of the mevalonate pathway promotes transformation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-09-2010
Show Abstract
Hide Abstract
The importance of cancer metabolism has been appreciated for many years, but the intricacies of how metabolic pathways interconnect with oncogenic signaling are not fully understood. With a clear understanding of how metabolism contributes to tumorigenesis, we will be better able to integrate the targeting of these fundamental biochemical pathways into patient care. The mevalonate (MVA) pathway, paced by its rate-limiting enzyme, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is required for the generation of several fundamental end-products including cholesterol and isoprenoids. Despite years of extensive research from the perspective of cardiovascular disease, the contribution of a dysregulated MVA pathway to human cancer remains largely unexplored. We address this issue directly by showing that dysregulation of the MVA pathway, achieved by ectopic expression of either full-length HMGCR or its novel splice variant, promotes transformation. Ectopic HMGCR accentuates growth of transformed and nontransformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice and, importantly, cooperates with RAS to drive the transformation of primary mouse embryonic fibroblasts cells. We further explore whether the MVA pathway may play a role in the etiology of human cancers and show that high mRNA levels of HMGCR and additional MVA pathway genes correlate with poor prognosis in a meta-analysis of six microarray datasets of primary breast cancer. Taken together, our results suggest that HMGCR is a candidate metabolic oncogene and provide a molecular rationale for further exploring the statin family of HMGCR inhibitors as anticancer agents.
Related JoVE Video
Differential interactions between statins and P-glycoprotein: implications for exploiting statins as anticancer agents.
Int. J. Cancer
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Statins, prescribed for decades to control cholesterol, have more recently been shown to have promising anticancer activity. Statins induce tumor-selective apoptosis by inhibiting the mevalonate (MVA) pathway. In addition, we have recently demonstrated that lovastatin modulates drug accumulation in a MVA-independent manner in multidrug-resistant (MDR) tumor cells overexpressing the P-glycoprotein (P-gp) multidrug transporter. P-gp-mediated drug efflux can contribute to chemotherapy failure. However, direct statin-mediated inhibition of P-gp in human MDR tumor cells at clinically achievable concentrations remains unexplored. An understanding of these interactions is crucial, both to appreciate differences in the anticancer potential of different statins and to safely and effectively integrate statins into traditional chemotherapy regimens that include P-gp substrates. Here we evaluate interactions between 4 statins (lovastatin, atorvastatin, fluvastatin and rosuvastatin) and P-gp, at both the molecular level using purified P-gp and at the cellular level using human MDR tumor cells. Lovastatin bound directly to purified P-gp with high affinity and increased doxorubicin accumulation in MDR tumor cells, potentiating DNA damage, growth arrest and apoptosis. By contrast, while atorvastatin inhibited substrate transport by purified P-gp in proteoliposomes, it had no effect on doxorubicin transport in MDR tumor cells. Finally, fluvastatin and rosuvastatin only interacted with P-gp in vitro at high concentrations and did not inhibit doxorubicin transport in MDR cells. These differential interactions should be considered when combining statins with traditional chemotherapeutic drugs.
Related JoVE Video
Characterization of the apoptotic response of human leukemia cells to organosulfur compounds.
BMC Cancer
PUBLISHED: 07-02-2010
Show Abstract
Hide Abstract
Novel therapeutic agents that selectively induce tumor cell death are urgently needed in the clinical management of cancers. Such agents would constitute effective adjuvant approaches to traditional chemotherapy regimens. Organosulfur compounds (OSCs), such as diallyl disulfide, have demonstrated anti-proliferative effects on cancer cells. We have previously shown that synthesized relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richi, possess tumor-specific antiproliferative effects and are thus promising lead candidates.
Related JoVE Video
Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma.
Blood
PUBLISHED: 04-01-2010
Show Abstract
Hide Abstract
Statin inhibitors, used to control hypercholesterolemia, trigger apoptosis of hematologic tumor cells and therefore have immediate potential as anticancer agents. Evaluations of statins in acute myelogenous leukemia and multiple myeloma have shown that statin efficacy is mixed, with only a subset of tumor cells being highly responsive. Our goal was to distinguish molecular features of statin-sensitive and -insensitive myeloma cells and gain insight into potential predictive markers. We show that dysregulation of the mevalonate pathway is a key determinant of sensitivity to statin-induced apoptosis in multiple myeloma. In sensitive cells, the classic feedback response to statin exposure is lost. This results in deficient up-regulation of 2 isoforms of hydroxymethylglutaryl coenzyme A reductase: the rate-limiting enzyme of the mevalonate pathway and hydroxymethylglutaryl coenzyme A synthase 1. To ascertain the clinical utility of these findings, we demonstrate that a subset of primary myeloma cells is sensitive to statins and that monitoring dysregulation of the mevalonate pathway may distinguish these cancers. We also show statins are highly effective and well tolerated in an orthotopic model of myeloma using cells harboring this dysregulation. This determinant of sensitivity further provides molecular rationale for the significant therapeutic index of statins on these tumor cells.
Related JoVE Video
Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance.
BMC Cancer
PUBLISHED: 03-18-2010
Show Abstract
Hide Abstract
Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action.
Related JoVE Video
The differential interaction of Brucella and ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens.
PLoS ONE
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some alpha-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria.
Related JoVE Video
Brucella ? 1,2 cyclic glucan is an activator of human and mouse dendritic cells.
PLoS Pathog.
Show Abstract
Hide Abstract
Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella ? 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella ? 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella ? 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies.
Related JoVE Video
The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition.
PLoS Pathog.
Show Abstract
Hide Abstract
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.