JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Multitracer stable isotope quantification of arginase and nitric oxide synthase activity in a mouse model of pseudomonas lung infection.
Mediators Inflamm.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs) and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using liquid chromatography-tandem mass spectrometry. The effect of infection was studied three days after direct tracheal instillation of Pseudomonas-coated agar beads. In the infusion model, lung infection resulted in a significant (28-fold) increase in NOS activity in lung but not in trachea, kidney, liver, or plasma. Absolute rates of arginase activity in solid tissues could not be calculated in this model. In an isolated lung perfusion model used for comparison increased NOS activity in infected lungs was confirmed (28.5-fold) and lung arginase activity was increased 9.7-fold. The activity of L-arginine metabolizing enzymes can be measured using stable isotope conversion in the mouse. Accumulation of L-ornithine in the whole mouse model hindered the exact quantification of arginase activity in the lung, a problem that was overcome utilizing an isolated lung perfusion model.
Related JoVE Video
Effect of arginase inhibition on pulmonary L-arginine metabolism in murine Pseudomonas pneumonia.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS) and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO) production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse.
Related JoVE Video
Hypersensitivity to antibiotics in patients with cystic fibrosis.
J. Cyst. Fibros.
PUBLISHED: 05-27-2013
Show Abstract
Hide Abstract
Hypersensitivity reactions to parenterally administered antibiotics (HRPA) are a substantial problem in managing CF. We conducted this observational study to assess their nature and frequency as well as risk factors.
Related JoVE Video
Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
Airway nitric oxide is reduced in cystic fibrosis airways. Asymmetric dimethylarginine is an endogenous nitric oxide synthase inhibitor that may contribute to nitric oxide deficiency in cystic fibrosis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.