JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Protection patterns in duck and chicken after homo- or hetero-subtypic reinfections with H5 and H7 low pathogenicity avian influenza viruses: a comparative study.
PLoS ONE
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
Avian influenza viruses are circulating continuously in ducks, inducing a mostly asymptomatic infection, while chickens are accidental hosts highly susceptible to respiratory disease. This discrepancy might be due to a different host response to the virus between these two bird species and in particular to a different susceptibility to reinfection. In an attempt to address this question, we analyzed, in ducks and in chickens, the viral load in infected tissues and the humoral immune response after experimental primary and secondary challenge infections with either homologous or heterologous low pathogenicity avian influenza viruses (LPAIV). Following homologous reinfection, ducks were only partially protected against viral shedding in the lower intestine in conjunction with a moderate antibody response, whereas chickens were totally protected against viral shedding in the upper respiratory airways and developed a stronger antibody response. On the contrary, heterologous reinfection was not followed by a reduced viral excretion in the upper airways of chickens, while ducks were still partially protected from intestinal excretion of the virus, with no correlation to the antibody response. Our comparative study provides a comprehensive demonstration of the variation of viral tropism and control of the host humoral response to LPAIV between two different bird species with different degrees of susceptibility to avian influenza.
Related JoVE Video
Susceptibility to Salmonella carrier-state: a possible Th2 response in susceptible chicks.
Vet. Immunol. Immunopathol.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
Infection of chicken with Salmonella may lead to a carrier-state characterized by the persistence of bacteria in the ceca for a long period of time and result in their excretion in feces. This excretion is the source of contamination of their congeners and food. During infection, enterocytes are the primary target cells for Salmonella, the producers of soluble factors which launch immune response and cells which are reciprocally responsive to surrounding immune cells. This study used microarrays to compare the gene expression profile during carrier-state of enterocytes purified from infected and control chicks which are either resistant or susceptible to Salmonella Enteritidis carrier-state. In total, we identified 271 genes significantly differentially expressed with an absolute fold change greater than 1.5. A global analysis determined interaction networks between differentially regulated genes. Using an a priori approach, our analyses focused on differentially expressed genes which were transcriptionally linked to cytokines playing a major role in the fate of the immune response. The expression of genes transcriptionally linked to type I interferon and TGF-? was down-regulated in infected chicks from both lines. Gene expression linked to the Th1 axis suggests the latter is inhibited in both lines. Finally, the expression of genes linked to IL-4, IL-5 and IL-13 indicates that susceptibility to carrier-state could be associated with a Th2 bias. Overall, these results highlight that the response to Salmonella during the acute phase and carrier-state is different and that enterocytes play a central role in this response.
Related JoVE Video
Initial insights into structure-activity relationships of avian defensins.
J. Biol. Chem.
PUBLISHED: 12-27-2011
Show Abstract
Hide Abstract
Numerous ?-defensins have been identified in birds, and the potential use of these peptides as alternatives to antibiotics has been proposed, in particular to fight antibiotic-resistant and zoonotic bacterial species. Little is known about the mechanism of antibacterial activity of avian ?-defensins, and this study was carried out to obtain initial insights into the involvement of structural features or specific residues in the antimicrobial activity of chicken AvBD2. Chicken AvBD2 and its enantiomeric counterpart were chemically synthesized. Peptide elongation and oxidative folding were both optimized. The similar antimicrobial activity measured for both L- and D-proteins clearly indicates that there is no chiral partner. Therefore, the bacterial membrane is in all likelihood the primary target. Moreover, this work indicates that the three-dimensional fold is required for an optimal antimicrobial activity, in particular for gram-positive bacterial strains. The three-dimensional NMR structure of chicken AvBD2 defensin displays the structural three-stranded antiparallel ?-sheet characteristic of ?-defensins. The surface of the molecule does not display any amphipathic character. In light of this new structure and of the king penguin AvBD103b defensin structure, the consensus sequence of the avian ?-defensin family was analyzed. Well conserved residues were highlighted, and the potential strategic role of the lysine 31 residue of AvBD2 was emphasized. The synthetic AvBD2-K31A variant displayed substantial N-terminal structural modifications and a dramatic decrease in activity. Taken together, these results demonstrate the structural as well as the functional role of the critical lysine 31 residue in antimicrobial activity.
Related JoVE Video
Purification and characterization of avian beta-defensin 11, an antimicrobial peptide of the hen egg.
Antimicrob. Agents Chemother.
PUBLISHED: 07-12-2010
Show Abstract
Hide Abstract
Natural antimicrobial peptides are present in different compartments (eggshell, egg white, and vitelline membranes) of the hen egg and are expected to be involved in the protection of the embryo during its development and to contribute to the production of pathogen-free eggs. In the present study, we used vitelline membranes from hen (Gallus gallus) eggs as a source of avian ?-defensin 11 (AvBD11). A purification scheme using affinity chromatography and reverse-phase chromatography was developed. Purified AvBD11 was analyzed by a combination of mass spectrometry approaches to characterize its primary sequence and structure. A monoisotopic molecular species at [M + H](+) of 9,271.56 Da was obtained, and its N- and C-terminal sequences were determined. We also examined posttranslational modifications and identified the presence of 6 internal disulfide bonds. AvBD11 was found to exhibit antimicrobial activity toward both Gram-positive and Gram-negative bacteria.
Related JoVE Video
Primary structure and antibacterial activity of chicken bone marrow-derived beta-defensins.
Antimicrob. Agents Chemother.
PUBLISHED: 09-08-2009
Show Abstract
Hide Abstract
Three biologically active beta-defensins were purified by chromatography from chicken bone marrow extract: avian beta-defensin 1 (AvBD1), AvBD2, and the newly isolated beta-defensin AvBD7. Mass spectrometry analyses showed that bone marrow-derived AvBD1, -2, and -7 peptides were present as mature peptides and revealed posttranslational modifications for AvBD1 and AvBD7 in comparison to their in silico-predicted amino acid sequences. Tandem mass spectrometry analysis using the nanoelectrospray-quadrupole time of flight method showed N-terminal glutaminyl cyclization of mature AvBD7 and C-terminal amidation of mature AvBD1 peptide, while posttranslational modifications were absent in bone marrow-derived mature AvBD2 peptide. Furthermore, mass spectrometry analysis performed on intact cells confirmed the presence of these three peptides in mature heterophils. In addition, the antibacterial activities of the three beta-defensins against a large panel of gram-positive and -negative bacteria were assessed. While the three defensins displayed similar antibacterial spectra of activity against gram-positive strains, AvBD1 and AvBD7 exhibited the strongest activity against gram-negative strains in comparison to AvBD2.
Related JoVE Video
Differential modulation of beta-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines.
Dev. Comp. Immunol.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
beta-Defensins are important components of innate immunity in mucosal tissue, a major entry site for several pathogens. These small cationic peptides possess antimicrobial activity against various microorganisms including Salmonella. Two chicken inbred lines, 6 and 15I, diverge phenotypically with respect to levels of Salmonella Enteritidis intestinal carriage and to level of gene expression of two beta-defensins, AvBD1 and AvBD2. The cellular source of these two defensins in the intestinal tissue has not previously been explored. Therefore embryonic intestinal cells were isolated from both chicken lines. Primary intestinal cell cultures expressed epithelial specific markers (villin and E-cadherin) and differentially expressed two beta-defensin genes AvBD1 and AvBD2 according to chicken line. Furthermore, S. Enteritidis interfered with AvBD2 expression only in the cells from the susceptible line 15I. Our embryonic cell culture model demonstrated that intestinal epithelium express beta-defensin antimicrobial peptides that may play a role in immunoprotection against Salmonella Enteritidis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.