JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Increased susceptibility to methotrexate-induced toxicity in nonalcoholic steatohepatitis.
Toxicol. Sci.
PUBLISHED: 07-31-2014
Show Abstract
Hide Abstract
Hepatic drug metabolizing enzymes and transporters play a crucial role in determining the fate of drugs, and alterations in liver function can place individuals at greater risk for adverse drug reactions (ADRs). We have shown that nonalcoholic steatohepatitis (NASH) leads to changes in the expression and localization of enzymes and transporters responsible for the disposition of numerous drugs. The purpose of this study was to determine the effect of NASH on methotrexate (MTX) disposition and the resulting toxicity profile. Sprague Dawley rats were fed either a control or methionine-choline-deficient diet for 8 weeks to induce NASH, then administered a single ip vehicle, 10, 40, or 100 mg/kg MTX injection followed by blood, urine, and feces collection over 96 h with terminal tissue collection. At the onset of dosing, Abcc1-4, Abcb1, and Abcg2 were elevated in NASH livers, whereas Abcc2 and Abcb1 were not properly localized to the membrane, similar to that previously observed in human NASH. NASH rodents receiving 40-100 mg/kg MTX exhibited hepatocellular damage followed by initiation of repair, whereas damage was absent in controls. NASH rodents receiving 100 mg/kg MTX exhibited slightly greater renal toxicity, indicating multiple organ toxicity, despite the majority of the dose being excreted by 6 h. Intestinal toxicity in NASH however, was strikingly less severe than controls, and coincided with reduced fecal MTX excretion. Because MTX-induced gastrointestinal toxicity limits the dose escalation necessary for cancer remission, these data suggest a greater risk for life-threatening MTX-induced hepatic and renal toxicity in NASH in the absence of overt gastrointestinal toxicity.
Related JoVE Video
Synergistic interaction between genetics and disease on pravastatin disposition.
J. Hepatol.
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
A genome wide association study and multiple pharmacogenetic studies have implicated the hepatic uptake transporter organic anion transporting polypeptide-1B1 (OATP1B1) in the pharmacokinetics and musculoskeletal toxicity of statin drugs. Other OATP uptake transporters can participate in the transport of pravastatin, partially compensating for the loss of OATP1B1 in patients carrying the polymorphism. Non-alcoholic steatohepatitis (NASH) in humans and in a diet-induced rodent model alter the expression of multiple OATP transporters.
Related JoVE Video
Experimental nonalcoholic steatohepatitis increases exposure to simvastatin hydroxy acid by decreasing hepatic organic anion transporting polypeptide expression.
J. Pharmacol. Exp. Ther.
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Simvastatin (SIM)-induced myopathy is a dose-dependent adverse drug reaction (ADR) that has been reported to occur in 18.2% of patients receiving a 40- to 80-mg dose. The pharmacokinetics of SIM hydroxy acid (SIMA), the bioactive form of SIM, and the occurrence of SIM-induced myopathy are linked to the function of the organic anion transporting polypeptide (Oatp) hepatic uptake transporters. Genetic polymorphisms in SLCO1B1, the gene for human hepatic OATP1B1, cause decreased elimination of SIMA and increased risk of developing myopathy. Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease, and is known to alter drug transporter expression and drug disposition. The purpose of this study was to assess the metabolism and disposition of SIM in a diet-induced rodent model of NASH. Rats were fed a methionine- and choline-deficient diet for 8 weeks to induce NASH and SIM was administered intravenously. Diet-induced NASH caused increased plasma retention and decreased biliary excretion of SIMA due to decreased protein expression of multiple hepatic Oatps. SIM exhibited increased volume of distribution in NASH as evidenced by increased muscle, decreased plasma, and no change in biliary concentrations. Although Cyp3a and Cyp2c11 proteins were decreased in NASH, no alterations in SIM metabolism were observed. These data, in conjunction with our previous data showing that human NASH causes a coordinated downregulation of hepatic uptake transporters, suggest that NASH-mediated transporter regulation may play a role in altered SIMA disposition and the occurrence of myopathy.
Related JoVE Video
Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models.
Drug Metab. Dispos.
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease is a prevalent form of chronic liver disease that can progress to the more advanced stage of nonalcoholic steatohepatitis (NASH). NASH has been shown to alter drug transporter regulation and may have implications in the development of adverse drug reactions. Several experimental rodent models have been proposed for the study of NASH, but no single model fully recapitulates all aspects of the human disease. The purpose of the current study was to determine which experimental NASH model best reflects the known alterations in human drug transporter expression to enable more accurate drug disposition predictions in NASH. Both rat and mouse NASH models were used in this investigation and include the methionine and choline deficient (MCD) diet model, atherogenic diet model, ob/ob and db/db mice, and fa/fa rats. Pathologic scoring evaluations demonstrated that MCD and atherogenic rats, as well as ob/ob and db/db mice, developed NASH. Liver mRNA and protein expression analyses of drug transporters showed that in general, efflux transporters were induced and uptake transporters were repressed in the rat MCD and the mouse ob/ob and db/db models. Lastly, concordance analyses suggest that both the mouse and rat MCD models as well as mouse ob/ob and db/db NASH models show the most similarity to human transporter mRNA and protein expression. These results suggest that the MCD rat and mouse model, as well as the ob/ob and db/db mouse models, may be useful for predicting altered disposition of drugs with similar kinetics across humans and rodents.
Related JoVE Video
The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic Fatty liver disease.
Toxicol. Sci.
PUBLISHED: 10-04-2013
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD) may progress from simple steatosis to severe, nonalcoholic steatohepatitis (NASH) in 7%-14% of the U.S. population through a second "hit" in the form of increased oxidative stress and inflammation. Endoplasmic reticulum (ER) stress signaling and the unfolded protein response (UPR) are triggered when high levels of lipids and misfolded proteins alter ER homeostasis creating a lipotoxic environment within NAFLD livers. The objective of this study was to determine the coordinate regulation of ER stress-associated genes in the progressive stages of human NAFLD. Human liver samples categorized as normal, steatosis, NASH (Fatty), and NASH (Not Fatty) were analyzed by individual Affymetrix GeneChip Human 1.0 ST microarrays, immunoblots, and immunohistochemistry. A gene set enrichment analysis was performed on autophagy, apoptosis, lipogenesis, and ER stress/UPR gene categories. An enrichment of downregulated genes in the ER stress-associated lipogenesis and ER stress/UPR gene categories was observed in NASH. Conversely, an enrichment of upregulated ER stress-associated genes for autophagy and apoptosis gene categories was observed in NASH. Protein expression of the adaptive liver response protein STC2 and the transcription factor X-box binding protein 1 spliced (XBP-1s) were significantly elevated among NASH samples, whereas other downstream ER stress proteins including CHOP, ATF4, and phosphorylated JNK and eIF2? were not significantly changed in disease progression. Increased nuclear accumulation of total XBP-1 protein was observed in steatosis and NASH livers. The findings reveal the presence of a coordinated, adaptive transcriptional response to hepatic ER stress in human NAFLD.
Related JoVE Video
Circulating microRNA 122 in the methionine- and choline-deficient mouse model of non-alcoholic steatohepatitis.
J Appl Toxicol
PUBLISHED: 08-15-2013
Show Abstract
Hide Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) and is a major cause of liver cirrhosis and hepatic failure. The methionine choline-deficient diet (MCD) is a frequently used hepatotoxicity animal model of NASH that induces hepatic transaminase (ALT, AST) elevations and hepatobiliary histological changes similar to those observed in human NASH. Liver-specific microRNA-122 (miR-122) has been shown as a key regulator of cholesterol and fatty acid metabolism in adult liver, and has recently been proposed as a sensitive and specific circulating biomarker of hepatic injury. The purpose of this study was to assess miR-122 serum levels in mice receiving an MCD diet for 0, 3, 7, 14, 28 and 56 days and compare the performance vs. routine clinical chemistry when benchmarked against the histopathological liver findings. MiR-122 levels were quantified in serum using RT-qPCR. Both miR-122 and ALT/AST levels were significantly elevated in serum at all timepoints. MiR-122 levels increased on average by 40-fold after 3 days of initiating the MCD diet, whereas ALT and AST changes were 4.8- and 3.3-fold, respectively. In general, miR-122 levels remained elevated across all time points, whereas the ALT/AST increases were less robust but correlated with the progressive severity of NASH as assessed by histopathology. In conclusion, serum levels of miR-122 can potentially be used as a sensitive biomarker for the early detection of hepatotoxicity and can aid in monitoring the extent of NAFLD-associated liver injury in mouse efficacy models. Copyright © 2013 John Wiley & Sons, Ltd.
Related JoVE Video
Differential regulation of hepatic organic cation transporter 1, organic anion-transporting polypeptide 1a4, bile-salt export pump, and multidrug resistance-associated protein 2 transporter expression in lymphocyte-deficient mice associates with interleuk
J. Pharmacol. Exp. Ther.
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
Cholestasis results from interrupted bile flow and is associated with immune-mediated liver diseases. It is unclear how inflammation contributes to cholestasis. The aim of this study was to determine whether T and B cells contribute to hepatic transporter expression under basal and inflammatory conditions. C57BL/6J wild-type mice or strains lacking T, B, or both T and B cells were exposed to lipopolysaccharide (LPS) or saline, and livers were collected 16 hours later. Branched DNA signal amplification was used to assess mRNA levels of organic anion-transporting polypeptides (Oatp) 1a1, 1a4, and 1b2; organic cation transporter (Oct) 1; canalicular bile-salt export pump (Bsep); multidrug resistance-associated proteins (Mrp) 2 and 3; and sodium-taurocholate cotransporting polypeptide (Ntcp). Real-time polymerase chain reaction analysis was used to correlate changes of transporter expression with interleukin-1b (IL-1b), IL-6, IL-17A, IL-17F, tumor necrosis factor-? (TNF-?), and interferon-? expression in the liver. LPS treatment inhibited Bsep and Oct1 mRNA expression, and this was abrogated with a loss of T cells, but not B cells. In addition, the absence of T cells increased Mrp2 mRNA expression, whereas B cell deficiency attenuated Oatp1a4 mRNA in LPS-treated mice. Oatp1a1, Oatp1b2, Ntcp, and Mrp3 were largely unaffected by T or B cell deficiency. Lymphocyte deficiency altered basal and inflammatory IL-6, but not TNF-? or IL-1b, mRNA expression. Taken together, these data implicate lymphocytes as regulators of basal and inflammatory hepatic transporter expression and suggest that IL-6 signaling may play a critical role.
Related JoVE Video
Characterization of Hepatocellular Carcinoma Related Genes and Metabolites in Human Nonalcoholic Fatty Liver Disease.
Dig. Dis. Sci.
PUBLISHED: 04-18-2013
Show Abstract
Hide Abstract
The worldwide prevalences of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are estimated to range from 30 to 40 % and 5-17 %, respectively. Hepatocellular carcinoma (HCC) is primarily caused by hepatitis B infection, but retrospective data suggest that 4-29 % of NASH cases will progress to HCC. Currently the connection between NASH and HCC is unclear.
Related JoVE Video
Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease.
Toxicol. Appl. Pharmacol.
PUBLISHED: 01-13-2013
Show Abstract
Hide Abstract
Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the classical (neutral) and alternative (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH.
Related JoVE Video
Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease.
Drug Metab. Dispos.
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that range from simple fatty liver to nonalcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of human NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism, and elimination (ADME) of drugs. Differential gene expression between three clinically defined pathological groups-normal, steatosis, and NASH-was analyzed. Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChip Human 1.0ST arrays. A total of 11,633 genes exhibited altered expression out of 33,252 genes at a 5% false discovery rate. Most gene expression changes occurred in the progression from steatosis to NASH. Principal component analysis revealed that hepatic disease status was the major determinant of differential ADME gene expression rather than age or sex of sample donors. Among the 515 drug transporters and 258 drug-metabolizing enzymes (DMEs) examined, uptake transporters but not efflux transporters or DMEs were significantly over-represented in the number of genes down-regulated. These results suggest that uptake transporter genes are coordinately targeted for down-regulation at the global level during the pathological development of NASH and that these patients may have decreased drug uptake capacity. This coordinated regulation of uptake transporter genes is indicative of a hepatoprotective mechanism acting to prevent accumulation of toxic intermediates in disease-compromised hepatocytes.
Related JoVE Video
Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease.
Drug Metab. Dispos.
PUBLISHED: 08-30-2010
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD), which occurs in approximately 17 to 40% of Americans, encompasses progressive stages of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH). Inflammation and oxidative stress are known characteristics of NAFLD; however, the precise mechanisms occurring during disease progression remain unclear. The purpose of the current study was to determine whether the expression or function of enzymes involved in the antioxidant response, NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione transferase (GST), and glutamate cysteine ligase, are altered in the progression of human NAFLD. Human livers staged as normal, steatotic, NASH (fatty), and NASH (not fatty) were obtained from the Liver Tissue Cell Distribution System. NQO1 mRNA, protein, and activity tended to increase with disease progression. mRNA levels of the GST isoforms A1, A2, A4, M3, and P1 increased with NAFLD progression. Likewise, GST A and P protein increased with progression; however, GST M protein levels tended to decrease. Of interest, total GST activity toward the substrate 1-chloro-2,4-dinitrobenzene decreased with NAFLD progression. GSH synthesis does not seem to be significantly dysregulated in NAFLD progression; however, the GSH/oxidized glutathione redox ratio seemed to be reduced with disease severity, indicating the presence of oxidative stress and depletion of GSH throughout progression of NAFLD. Malondialdehyde concentrations were significantly increased with disease progression, further indicating the presence of oxidative stress. Nuclear immunohistochemical staining of nuclear factor E2-related factor 2 (Nrf2), an indicator of activation of the transcription factor, was evident in all stages of NAFLD. The current data suggest that Nrf2 activation occurs in response to disease progression followed by induction of specific Nrf2 targets, whereas functionality of specific antioxidant defense enzymes seems to be impaired as NAFLD progresses.
Related JoVE Video
Development of high-yield autofluorescent protein microarrays using hybrid cell-free expression with combined Escherichia coli S30 and wheat germ extracts.
Proteome Sci
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Protein-based microarray platforms offer considerable promise as high-throughput technologies in proteomics. Particular advantages are provided by self-assembling protein microarrays and much interest centers around analysis of eukaryotic proteins and their molecular interactions. Efficient cell-free protein synthesis is paramount for the production of self-assembling protein microarrays, requiring optimal transcription, translation, and protein folding. The Escherichia coli S30 extract demonstrates high translation rates but lacks the protein-folding efficiency of its eukaryotic counterparts derived from rabbit reticulocyte and wheat germ extract. In comparison to E. coli, eukaryotic extracts, on the other hand, exhibit slower translation rates and poor overall protein yields. A cell-free expression system that synthesizes folded eukaryotic proteins in considerable yields would optimize in vitro translation for protein microarray assembly.
Related JoVE Video
Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease.
Drug Metab. Dispos.
Show Abstract
Hide Abstract
The UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) represent major phase II drug-metabolizing enzymes that are also responsible for maintaining cellular homeostasis by metabolism of several endogenous molecules. Perturbations in the expression or function of these enzymes can lead to metabolic disorders and improper management of xenobiotics and endobiotics. Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Because the liver plays a central role in the metabolism of xenobiotics, the purpose of the current study was to determine the effect of human NAFLD progression on the expression and function of UGTs and SULTs in normal, steatosis, NASH (fatty), and NASH (not fatty/cirrhosis) samples. We identified upregulation of UGT1A9, 2B10, and 3A1 and SULT1C4 mRNA in both stages of NASH, whereas UGT2A3, 2B15, and 2B28 and SULT1A1, 2B1, and 4A1 as well as 3-phosphoadenosine-5-phosphosulfate synthase 1 were increased in NASH (not fatty/cirrhosis) only. UGT1A9 and 1A6 and SULT1A1 and 2A1 protein levels were decreased in NASH; however, SULT1C4 was increased. Measurement of the glucuronidation and sulfonation of acetaminophen (APAP) revealed no alterations in glucuronidation; however, SULT activity was increased in steatosis compared with normal samples, but then decreased in NASH compared with steatosis. In conclusion, the expression of specific UGT and SULT isoforms appears to be differentially regulated, whereas sulfonation of APAP is disrupted during progression of NAFLD.
Related JoVE Video
Altered arsenic disposition in experimental nonalcoholic fatty liver disease.
Drug Metab. Dispos.
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD) is represented by a spectrum of liver pathologies ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Liver damage sustained in the progressive stages of NAFLD may alter the ability of the liver to properly metabolize and eliminate xenobiotics. The purpose of the current study was to determine whether NAFLD alters the disposition of the environmental toxicant arsenic. C57BL/6 mice were fed either a high-fat or a methionine-choline-deficient diet to model simple steatosis and NASH, respectively. At the conclusion of the dietary regimen, all mice were given a single oral dose of either sodium arsenate or arsenic trioxide. Mice with NASH excreted significantly higher levels of total arsenic in urine (24 h) compared with controls. Total arsenic in the liver and kidneys of NASH mice was not altered; however, NASH liver retained significantly higher levels of the monomethyl arsenic metabolite, whereas dimethyl arsenic was retained significantly less in the kidneys of NASH mice. NASH mice had significantly higher levels of the more toxic trivalent form in their urine, whereas the pentavalent form was preferentially retained in the liver of NASH mice. Moreover, hepatic protein expression of the arsenic biotransformation enzyme arsenic (3+ oxidation state) methyltransferase was not altered in NASH animals, whereas protein expression of the membrane transporter multidrug resistance-associated protein 1 was increased, implicating cellular transport rather than biotransformation as a possible mechanism. These results suggest that NASH alters the disposition of arsenical species, which may have significant implications on the overall toxicity associated with arsenic in NASH.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.