JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep?
Mol. Ecol.
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Willows (Salix: Salicaceae) form a major ecological component of Holarctic floras and consequently are an obvious target for a DNA-based identification system. We surveyed two to seven plastid genome regions (~3.8 kb; ~3% of the genome) from 71 Salix species across all five subgenera, to assess their performance as DNA barcode markers. Although Salix has a relatively high level of interspecific hybridization, this may not sufficiently explain the near complete failure of barcoding that we observed: only one species had a unique barcode. We recovered 39 unique haplotypes, from more than 500 specimens, that could be partitioned into six major haplotype groups. A unique variant of group I (haplotype 1*) was shared by 53 species in three of five Salix subgenera. This unusual pattern of haplotype sharing across infrageneric taxa is suggestive of either a massive nonrandom coalescence failure (incomplete lineage sorting), or of repeated plastid capture events, possibly including a historical selective sweep of haplotype 1* across taxonomic sections. The former is unlikely as molecular dating indicates that haplotype 1* originated recently and is nested in the oldest major haplotype group in the genus. Further, we detected significant non-neutrality in the frequency spectrum of mutations in group I, but not outside group I, and demonstrated a striking absence of geographical (isolation by distance) effects in the haplotype distributions of this group. The most likely explanation for the patterns we observed involves recent repeated plastid capture events, aided by widespread hybridization and long-range seed dispersal, but primarily propelled by one or more trans-species selective sweeps.
Related JoVE Video
The effects of rapid desiccation on estimates of plant genome size.
Chromosome Res.
PUBLISHED: 08-27-2011
Show Abstract
Hide Abstract
Flow cytometry has become the dominant method for estimating nuclear DNA content in plants, either for ploidy determination or quantification of absolute genome size. Current best practices for flow cytometry involve the analysis of fresh tissue, however, this imposes significant limitations on the geographic scope and taxonomic diversity of plants that can be included in large-scale genome size studies. Dried tissue has been used increasingly in recent years, but largely in the context of ploidy analysis. Here we test rapid tissue drying with silica gel as a method for use in genome size studies, potentially enabling broader geographic sampling of plants when fresh tissue collection is not feasible. Our results indicate that rapid drying introduces comparatively minor error (<10%), which is similar to the error introduced by other common methodological variations such as instrument. Additionally, the relative effect of drying on genome size and data quality varied between species and buffers. Tissue desiccation provides a promising approach for expanding our knowledge of plant genome size diversity.
Related JoVE Video
Spatial patterns of plant diversity below-ground as revealed by DNA barcoding.
Mol. Ecol.
PUBLISHED: 01-22-2011
Show Abstract
Hide Abstract
Our understanding of the spatial organization of root diversity in plant communities and of the mechanisms of community assembly has been limited by our ability to identify plants based on root tissue, especially in diverse communities. Here, we test the effectiveness of the plastid gene rbcL, a core plant DNA barcoding marker, for investigating spatial patterns of root diversity, and relate observed patterns to above-ground community structure. We collected 3800 root fragments from four randomly positioned, 1-m-deep soil profiles (two vertical transects per plot), located in an old-field community in southern Ontario, Canada, and extracted and sequenced DNA from 1531 subsampled fragments. We identified species by comparing sequences with a DNA barcode reference library developed previously for the local flora. Nearly 85% of sampled root fragments were successfully sequenced and identified as belonging to 29 plant species or species groups. Root abundance and species richness varied in horizontal space and were negatively correlated with soil depth. The relative abundance of taxa below-ground was correlated with their frequency above-ground (r = 0.73, P = 0.0001), but several species detected in root tissue were not observed in above-ground quadrats. Multivariate analyses indicated that diversity was highly structured below-ground, and associated with depth, root morphology, soil chemistry and soil texture, whereas little structure was evident above-ground. Furthermore, analyses of species co-occurrence indicates strong species segregation overall but random co-occurrence among confamilials. Our results provide insights into the role of environmental filtering and competitive interactions in the organization of plant diversity below-ground, and also demonstrate the utility of barcoding for the identification of plant roots.
Related JoVE Video
Methodology significantly affects genome size estimates: quantitative evidence using bryophytes.
Cytometry A
PUBLISHED: 07-24-2010
Show Abstract
Hide Abstract
Flow cytometry (FCM) is commonly used to determine plant genome size estimates. Methodology has improved and changed during the past three decades, and researchers are encouraged to optimize protocols for their specific application. However, this step is typically omitted or undescribed in the current plant genome size literature, and this omission could have serious consequences for the genome size estimates obtained. Using four bryophyte species (Brachythecium velutinum, Fissidens taxifolius, Hedwigia ciliata, and Thuidium minutulum), three methodological approaches to the use of FCM in plant genome size estimation were tested. These included nine different buffers (Baranyis, de Laats, Galbraiths, General Purpose, LB01, MgSO(4), Ottos, Tris.MgCl(2), and Woody Plant), seven propidium iodide (PI) staining periods (5, 10, 15, 20, 45, 60, and 120 min), and six PI concentrations (10, 25, 50, 100, 150, and 200 microg ml(-1)). Buffer, staining period and staining concentration all had a statistically significant effect (P = 0.05) on the genome size estimates obtained for all four species. Buffer choice and PI concentration had the greatest effect, altering the 1C-values by as much as 8% and 14%, respectively. As well, the quality of the data varied with the different methodology used. Using the methodology determined to be the most accurate in this study (LB01 buffer and PI staining for 20 min at 150 microg ml(-1)), three new genome size estimates were obtained: B. velutinum: 0.46 pg, H. ciliata: 0.30 pg, and T. minutulum: 0.46 pg. While the peak quality of flow cytometry histograms is important, researchers must consider that changes in methodology can also affect the relative peak positions and therefore the genome size estimates obtained for plants using FCM.
Related JoVE Video
Improving sequencing quality from PCR products containing long mononucleotide repeats.
BioTechniques
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
Stutter products are a common artifact in the PCR amplification of frequently used genetic markers that contain mononucleotide simple sequence repeats. Despite the importance of accurate determination of nucleotide sequence and allele size, there has been little progress toward decreasing the formation of stutter products during PCR. In this study, we tested the effects of lowered extension temperatures, inclusion of co-solutes in PCR, PCR cycle number, and the use of different polymerases on sequence quality for a set of sequences containing mononucleotide A/T repeats of 10-17 bp. Our analyses showed that sequence quality of mononucleotide repeats
Related JoVE Video
Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?
Mol Ecol Resour
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
The ability to discriminate between species using barcoding loci has proved more difficult in plants than animals, raising the possibility that plant species boundaries are less well defined. Here, we review a selection of published barcoding data sets to compare species discrimination in plants vs. animals. Although the use of different genetic markers, analytical methods and depths of taxon sampling may complicate comparisons, our results using common metrics demonstrate that the number of species supported as monophyletic using barcoding markers is higher in animals (> 90%) than plants (~70%), even after controlling for the amount of parsimony-informative information per species. This suggests that more than a simple lack of variability limits species discrimination in plants. Both animal and plant species pairs have variable size gaps between intra- and interspecific genetic distances, but animal species tend to have larger gaps than plants, even in relatively densely sampled genera. An analysis of 12 plant genera suggests that hybridization contributes significantly to variation in genetic discontinuity in plants. Barcoding success may be improved in some plant groups by careful choice of markers and appropriate sampling; however, overall fine-scale species discrimination in plants relative to animals may be inherently more difficult because of greater levels of gene-tree paraphyly.
Related JoVE Video
DNA barcoding methods for land plants.
Methods Mol. Biol.
Show Abstract
Hide Abstract
DNA barcoding in the land plants presents a number of challenges compared to DNA barcoding in many animal clades. The CO1 animal DNA barcode is not effective for plants. Plant species hybridize frequently, and there are many cases of recent speciation via mechanisms, such as polyploidy and breeding system transitions. Additionally, there are many life-history trait combinations, which combine to reduce the likelihood of a small number of markers effectively tracking plant species boundaries. Recent results, however, from the two chosen core plant DNA barcode regions rbcL and matK plus two supplementary regions trnH-psbA and internal transcribed spacer (ITS) (or ITS2) have demonstrated reasonable levels of species discrimination in both floristic and taxonomically focused studies. We describe sampling techniques, extraction protocols, and PCR methods for each of these two core and two supplementary plant DNA barcode regions, with extensive notes supporting their implementation for both low- and high-throughput facilities.
Related JoVE Video
A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits.
New Phytol.
Show Abstract
Hide Abstract
Genome size (C-value) and endopolyploidy (endoreduplication index, EI) are known to correlate with various morphological and ecological traits, in addition to phylogenetic placement. A phylogenetically controlled multivariate analysis was used to explore the relationships between DNA content and phenotype in angiosperms. Seeds from 41 angiosperm species (17 families) were grown in a common glasshouse experiment. Genome size (2C-value and 1Cx-value) and EI (in four tissues: leaf, stem, root, petal) were determined using flow cytometry. The phylogenetic signal was calculated for each measure of DNA content, and phylogenetic canonical correlation analysis (PCCA) explored how the variation in genome size and EI was correlated with 18 morphological and ecological traits. Phylogenetic signal (?) was strongest for EI in all tissues, and ? was stronger for the 2C-value than the 1Cx-value. PCCA revealed that EI was correlated with pollen length, stem height, seed mass, dispersal mechanism, arbuscular mycorrhizal association, life history and flowering time, and EI and genome size were both correlated with stem height and life history. PCCA provided an effective way to explore multiple factors of DNA content variation and phenotypic traits in a phylogenetic context. Traits that were correlated significantly with DNA content were linked to plant competitive ability.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.