JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Noncanonical matrix metalloprotease-1-protease-activated receptor-1 signaling triggers vascular smooth muscle cell dedifferentiation and arterial stenosis.
J. Biol. Chem.
PUBLISHED: 06-27-2013
Show Abstract
Hide Abstract
Vascular injury that results in proliferation and dedifferentiation of vascular smooth muscle cells (SMCs) is an important contributor to restenosis following percutaneous coronary interventions or plaque rupture. Protease-activated receptor-1 (PAR1) has been shown to play a role in vascular repair processes; however, little is known regarding its function or the relative roles of the upstream proteases thrombin and matrix metalloprotease-1 (MMP-1) in triggering PAR1-mediated arterial restenosis. The goal of this study was to determine whether noncanonical MMP-1 signaling through PAR1 would contribute to aberrant vascular repair processes in models of arterial injury. A mouse carotid arterial wire injury model was used for studies of neointima hyperplasia and arterial stenosis. The mice were treated post-injury for 21 days with a small molecule inhibitor of MMP-1 or a direct thrombin inhibitor and compared with vehicle control. Intimal and medial hyperplasia was significantly inhibited by 2.8-fold after daily treatment with the small molecule MMP-1 inhibitor, an effect that was lost in PAR1-deficient mice. Conversely, chronic inhibition of thrombin showed no benefit in suppressing the development of arterial stenosis. Thrombin-PAR1 signaling resulted in a supercontractile, differentiated phenotype in SMCs. Noncanonical MMP-1-PAR1 signaling resulted in the opposite effect and led to a dedifferentiated phenotype via a different G protein pathway. MMP-1-PAR1 significantly stimulated hyperplasia and migration of SMCs, and resulted in down-regulation of SMC contractile genes. These studies provide a new mechanism for the development of vascular intimal hyperplasia and suggest a novel therapeutic strategy to suppress restenosis by targeting noncanonical MMP-1-PAR1 signaling in vascular SMCs.
Related JoVE Video
Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer.
Cancer Res.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Most patients with ovarian cancer are diagnosed late in progression and often experience tumor recurrence and relapses due to drug resistance. Surface expression of matrix metalloprotease (MMP)-14 on ovarian cancer cells stimulates a tumor-stromal signaling pathway that promotes angiogenesis and tumor growth. In a cohort of 92 patients, we found that MMP-14 was increased in the serum of women with malignant ovarian tumors. Therefore, we investigated the preclinical efficacy of a MMP-14 monoclonal antibody that could inhibit the migratory and invasive properties of aggressive ovarian cancer cells in vitro. MMP-14 antibody disrupted ovarian tumor-stromal communication and was equivalent to Avastin in suppressing blood vessel growth in mice harboring Matrigel plugs. These effects on angiogenesis correlated with downregulation of several important angiogenic factors. Furthermore, mice with ovarian cancer tumors treated with anti-MMP-14 monotherapy showed a marked and sustained regression in tumor growth with decreased angiogenesis compared with immunoglobulin G (IgG)-treated controls. In a model of advanced peritoneal ovarian cancer, MMP-14-dependent invasion and metastasis was effectively inhibited by intraperitoneal administration of monoclonal MMP-14 antibody. Together, these studies provide a preclinical proof-of-concept for MMP-14 targeting as an adjuvant treatment strategy for advanced ovarian cancer.
Related JoVE Video
Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia.
Blood
PUBLISHED: 12-20-2011
Show Abstract
Hide Abstract
The chemokine receptor CXCR4, which normally regulates stromal stem cell interactions in the bone marrow, is highly expressed on a variety of malignant hematologic cells, including lymphoma and lymphocytic leukemias. A new treatment concept has arisen wherein CXCR4 may be an effective therapeutic target as an adjunct to treatment of hematologic neoplasms with chemo- and immunotherapy. In the present study, we developed pepducins, cell-penetrating lipopeptide antagonists of CXCR4, to interdict CXCL12-CXCR4 transmembrane signaling to intracellular G-proteins. We demonstrate that pepducins targeting the first (i1) or third (i3) intracellular loops of CXCR4 completely abrogate CXCL12-mediated cell migration of lymphocytic leukemias and lymphomas. Stromal-cell coculture protects lymphoma cells from apoptosis in response to treatment with the CD20-targeted Ab rituximab. However, combination treatment with CXCR4 pepducins and rituximab significantly increases the apoptotic effect of rituximab. Furthermore, treatment of mice bearing disseminated lymphoma xenografts with pepducins alone or in combination with rituximab significantly increased their survival. These data demonstrate that CXCL12-CXCR4 signaling can be effectively inhibited by cell-penetrating pepducins, which represents a potential new treatment strategy for lymphoid malignancies.
Related JoVE Video
Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 09-22-2011
Show Abstract
Hide Abstract
Emerging evidence suggests that protease-activated receptors-1 and -2 (PAR1 and PAR2) can signal together in response to proteases found in the rapidly changing microenvironment of damaged blood vessels. However, it is unknown whether PAR1 and PAR2 promote or mitigate the hyperplastic response to arterial injury. Using cell-penetrating PAR1 pepducins and mice deficient in PAR1 or PAR2, we set out to determine the respective contributions of the receptors to hyperplasia and phenotypic modulation of smooth muscle cells (SMCs) in response to arterial injury.
Related JoVE Video
Tumor progression locus 2 mediates signal-induced increases in cytoplasmic calcium and cell migration.
Sci Signal
PUBLISHED: 08-27-2011
Show Abstract
Hide Abstract
The mitogen-activated protein kinase kinase kinase (MAPKKK or MAP3K) tumor progression locus 2 (Tpl2) is required for the transduction of signals initiated by the thrombin-activated G protein-coupled receptor (GPCR) protease-activated receptor-1 (PAR1), which promote reorganization of the actin cytoskeleton and cell migration. Here, we show that Tpl2 is activated through G?(i2)-transduced GPCR signals. Activated Tpl2 promoted the phosphorylation and activation of phospholipase C-?3 (PLC?(3)); consequently, Tpl2 was required for thrombin-dependent production of inositol 1,4,5-trisphosphate (IP(3)), IP(3)-mediated cytoplasmic calcium ion (Ca(2+)) signals, and the activation of classical and novel members of the protein kinase C (PKC) family. A PKC-mediated feedback loop facilitated extracellular signal-regulated kinase (ERK) activation in response to Tpl2 and contributed to the coordinate regulation of the ERK and Ca(2+) signaling pathways. Pharmacological and genetic studies revealed that stimulation of cell migration by Tpl2 depends on both of these pathways. Tpl2 also promoted Ca(2+) signals and cell migration from sphingosine 1-phosphate-responsive GPCRs, which also couple to G?(i); from Wnt5a; and from the interleukin-1? (IL-1?) receptor, a member of the Toll-IL-1R (TIR) domain family. Our data provide new insights into the role of Tpl2 in GPCR-mediated Ca(2+) signaling and cell migration.
Related JoVE Video
G protein-coupled receptor modulation with pepducins: moving closer to the clinic.
Ann. N. Y. Acad. Sci.
PUBLISHED: 05-28-2011
Show Abstract
Hide Abstract
At the 2nd Pepducin Science Symposium held in Cambridge, Massachusetts, on November 4-5, 2010, investigators working in G protein-coupled receptor (GPCR) research convened to discuss progress since last years inaugural conference. This years symposium focused on increasing knowledge of the structure and function of this ubiquitous superfamily of membrane receptors and their potential modulation for disease treatment. Presentations also focused on how GPCR mechanisms might be exploited to treat diseases with pepducins, novel synthetic lipopeptide pharmacophores that modulate heptahelical GPCR activity. While the multiple roles of GPCRs in physiological and pathophysiological processes offer significant opportunities for novel drug development, the global nature of their activity challenges drug-specific and validated target identification. This years conference highlighted advances in understanding of GPCR agonist and antagonist ligand-binding motifs, their ligand-independent functions, structure-activity relationships (SARs), and evolving unique methods to probe GPCR structure and function. Study results summarized at the meeting also provided evidence for evolving views of how signaling mechanisms work through these receptors.
Related JoVE Video
Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
Protease-activated receptor-2 (PAR2), a cell surface receptor for trypsin-like proteases, plays a key role in a number of acute and chronic inflammatory diseases of the joints, lungs, brain, gastrointestinal tract, and vascular systems. Despite considerable effort by the pharmaceutical industry, PAR2 has proven recalcitrant to targeting by small molecule inhibitors, which have been unable to effectively prevent the interaction of the protease-generated tethered ligand with the body of the receptor. Here, we report the development of first-in-class cell-penetrating lipopeptide "pepducin" antagonists of PAR2. The design of the third intracellular (i3) loop pepducins were based on a structural model of a PAR2 dimer and by mutating key pharmacophores in the receptor intracellular loops and analogous pepducins. Individual pharmacophores were identified, which controlled constitutive, agonist, and antagonist activities. This approach culminated in the identification of the P2pal-18S pepducin which completely suppressed trypsin and mast cell tryptase signaling through PAR2 in neutrophils and colon cancer cells. The PAR2 pepducin was highly efficacious in blocking PAR2-dependent inflammatory responses in mouse models. These effects were lost in PAR2-deficient and mast-cell-deficient mice, thereby validating the specificity of the pepducin in vivo. These data provide proof of concept that PAR2 pepducin antagonists may afford effective treatments of potentially debilitating inflammatory diseases and serve as a blueprint for developing highly potent and specific i3-loop-based pepducins for other G protein-coupled receptors (GPCRs).
Related JoVE Video
A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis.
EMBO Mol Med
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Sepsis is a deadly disease characterized by the inability to regulate the inflammatory-coagulation response in which the endothelium plays a key role. The cause of this perturbation remains poorly understood and has hampered the development of effective therapeutics. Matrix metalloproteases (MMPs) are involved in the host response to pathogens, but can also cause uncontrolled tissue damage and contribute to mortality. We found that human sepsis patients had markedly elevated plasma proMMP-1 and active MMP-1 levels, which correlated with death at 7 and 28 days after diagnosis. Likewise, septic mice had increased plasma levels of the MMP-1 ortholog, MMP-1a. We identified mouse MMP-1a as an agonist of protease-activated receptor-1 (PAR1) on endothelial cells. MMP-1a was released from endothelial cells in septic mice. Blockade of MMP-1 activity suppressed endothelial barrier disruption, disseminated intravascular coagulation (DIC), lung vascular permeability as well as the cytokine storm and improved survival, which was lost in PAR1-deficient mice. Infusion of human MMP-1 increased lung vascular permeability in normal wild-type mice but not in PAR1-deficient mice. These findings implicate MMP-1 as an important activator of PAR1 in sepsis and suggest that therapeutics that target MMP1-PAR1 may prove beneficial in the treatment of sepsis.
Related JoVE Video
Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer.
Am. J. Pathol.
PUBLISHED: 03-10-2011
Show Abstract
Hide Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated by proteolytic cleavage and generation of a tethered ligand. High PAR1 expression has been documented in a variety of invasive cancers of epithelial origin. In the present study, we investigated the contribution of the four PAR family members to motility of lung carcinomas and primary tumor samples from patients. We found that of the four PARs, only PAR1 expression was highly increased in the lung cancer cell lines. Primary lung cancer cells isolated from patient lung tumors migrated at a 10- to 40-fold higher rate than epithelial cells isolated from nonmalignant lung tissue. Cell-penetrating pepducin inhibitors were generated against the first (i1) and third (i3) intracellular loops of PAR1 and tested for their ability to inhibit PAR1-driven migration and extracellular regulated kinase (ERK)1/2 activity. The PAR1 pepducins showed significant inhibition of cell migration in both primary and established cell lines similar to silencing of PAR1 expression with short hairpin RNA (shRNA). Unlike i1 pepducins, the i3 loop pepducins were effective inhibitors of PAR1-mediated ERK activation and tumor growth. Comparable in efficacy with Bevacizumab, monotherapy with the PAR1 i3 loop pepducin P1pal-7 provided significant 75% inhibition of lung tumor growth in nude mice. We identify the PAR1-ERK1/2 pathway as a feasible target for therapy in lung cancer.
Related JoVE Video
Bivalirudin is a dual inhibitor of thrombin and collagen-dependent platelet activation in patients undergoing percutaneous coronary intervention.
Circ Cardiovasc Interv
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Bivalirudin, a direct thrombin inhibitor, is a widely used adjunctive therapy in patients undergoing percutaneous intervention (PCI). Thrombin is a highly potent agonist of platelets and activates the protease-activated receptors, PAR1 and PAR4, but it is not known whether bivalirudin exerts antiplatelet effects in PCI patients. We tested the hypothesis that bivalirudin acts as an antiplatelet agent in PCI patients by preventing activation of PARs on the platelet surface.
Related JoVE Video
Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models.
Methods Mol. Biol.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCR) are a superfamily of receptors that are vital in a wide array of physiological processes. Modulation of GPCR signaling has been an intensive area of therapeutic study, mainly due to the diverse pathophysiological significance of GPCRs. Pepducins are cell-penetrating lipidated peptides designed to target the intracellular loops of the GPCR of interest. Pepducins can function as agonists or antagonists of their cognate receptor, making them highly useful compounds for the study of GPCR signaling. Pepducins have been used to control platelet-dependent hemostasis and thrombosis, tumor growth, invasion, and angiogenesis, as well as to improve sepsis outcomes in mice. Pepducins have been successfully designed against a wide variety of GPCRs including the protease-activated receptors (PAR1, 2, 4), the chemokine receptors (CXCR1, 2, 4), the sphingosine-1-phosphate receptor (S1P3), the adrenergic receptor (ADRA1B), and have the potential to help reveal the functions of intractable GPCRs. Pharmacokinetic, pharmacodynamic, and biodistribution studies have showed that pepducins are widely distributed throughout the body except the brain and possess appropriate drug-like properties for use in vivo. Here, we discuss the delivery, pharmacology, and biodistribution of pepducins, as well as the effects of pepducins in models of inflammation, cardiovascular disease, cancer, and angiogenesis.
Related JoVE Video
Serine and metalloprotease signaling through PAR1 in arterial thrombosis and vascular injury.
IUBMB Life
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Thrombin-dependent platelet activation has been shown to be important in the setting of angioplasty and stenting, which may cause ischemic complications including acute myocardial infarction and death. Inhibitors of the high-affinity thrombin receptor, protease-activated receptor 1 (PAR1), are now being evaluated in clinical trials for safety and efficacy in patients with atherothrombotic disease. However, it is unknown whether chronic inhibition of PAR1 in these large patient populations will have beneficial or possibly adverse effects on other biologic processes involved in blood vessel homeostasis and the response to vascular injury. Most recently, PAR1 was found to be cleaved at a distinct site by matrix metalloprotease-1 (MMP-1) to create a longer tethered ligand, which activates a distinct spectrum of G protein pathways in platelets. The differential activation by serine proteases such as thrombin and the metalloprotease MMP-1, places the protease receptor PAR1 at the junction of two major protease classes critically involved in thrombosis, matrix remodeling, and the response to vascular injury.
Related JoVE Video
Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the ?(2A)-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G(?q) but not G(?12). The compound inhibited thrombus formation in vivo following vascular injury with an IC(50) of ?1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation.
Related JoVE Video
Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy.
Cancer Res.
PUBLISHED: 06-22-2010
Show Abstract
Hide Abstract
Ovarian cancer is a lethal gynecologic malignancy that may benefit from new therapies that block key paracrine pathways involved in tumor-stromal interactions and tumor vascularity. It was recently shown that matrix metalloprotease-1 (MMP1) activation of the G protein-coupled receptor protease-activated receptor-1 (PAR1) is an important stimulator of angiogenesis and metastasis in peritoneal mouse models of ovarian cancer. In the present study, we tested the hypothesis that MMP1-PAR1 promotes angiogenesis through its paracrine control of angiogenic chemokine receptors. We found that MMP1-PAR1 activation induces the secretion of several angiogenic factors from ovarian carcinoma cells, most prominently interleukin (IL)-8, growth-regulated oncogene-alpha (GRO-alpha), and monocyte chemoattractant protein-1. The secreted IL-8 and GRO-alpha acts on endothelial CXCR1/2 receptors in a paracrine manner to cause robust endothelial cell proliferation, tube formation, and migration. A cell-penetrating pepducin, X1/2pal-i3, which targets the conserved third intracellular loop of both CXCR1 and CXCR2 receptors, significantly inhibited endothelial cell proliferation, tube formation, angiogenesis, and ovarian tumor growth in mice. Matrigel plugs mixed with MMP1-stimulated, OVCAR-4-conditioned media showed a dramatic 33-fold increase in blood vessel formation in mice. The X1/2pal-i3 pepducin completely inhibited MMP1-dependent angiogenesis compared with a negative control pepducin or vehicle. Conversely, a vascular endothelial growth factor-directed antibody, Avastin, suppressed angiogenesis in mice but, as expected, was unable to inhibit IL-8 and GRO-alpha-dependent endothelial tube formation in vitro. These studies identify a critical MMP1-PAR1-CXCR1/2 paracrine pathway that might be therapeutically targeted for ovarian cancer treatment.
Related JoVE Video
A novel protease-activated receptor-1 interactor, Bicaudal D1, regulates G protein signaling and internalization.
J. Biol. Chem.
PUBLISHED: 02-17-2010
Show Abstract
Hide Abstract
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that plays critical roles in cancer, angiogenesis, inflammation, and thrombosis. Proteolytic cleavage of the extracellular domain of PAR1 generates a tethered ligand that activates PAR1 in an unusual intramolecular mode. The signal emanating from the irreversibly cleaved PAR1 is terminated by G protein uncoupling and internalization; however, the mechanisms of PAR1 signal shut off still remain unclear. Using a yeast two-hybrid screen, we identified Bicaudal D1 (BicD1) as a direct interactor with the C-terminal cytoplasmic domain of PAR1. BICD was originally identified as an essential developmental gene associated with mRNA and Golgi-endoplasmic reticulum transport. We discovered a novel function of BicD1 in the modulation of G protein signaling, cell proliferation, and endocytosis downstream of PAR1. BicD1 and its C-terminal CC3 domain inhibited PAR1 signaling to G(q)-phospholipase C-beta through coiled-coil interactions with the cytoplasmic 8th helix of PAR1. Unexpectedly, BicD1 was also found to be a potent suppressor of PAR1-driven proliferation of breast carcinoma cells. The growth-suppressing effects of BicD1 required the ability to interact with the 8th helix of PAR1. Silencing of BicD1 expression impaired endocytosis of PAR1, and BicD1 co-localized with PAR1 and tubulin, implicating BicD1 as an important adapter protein involved in the transport of PAR1 from the plasma membrane to endosomal vesicles. Together, these findings provide a link between PAR1 signal termination and internalization through the non-G protein effector, BicD1.
Related JoVE Video
Insider access: pepducin symposium explores a new approach to GPCR modulation.
Ann. N. Y. Acad. Sci.
PUBLISHED: 11-21-2009
Show Abstract
Hide Abstract
The inaugural Pepducin Science Symposium convened in Cambridge, Massachusetts on March 8-9, 2009 provided the opportunity for an international group of distinguished scientists to present and discuss research regarding G protein-coupled receptor-related research. G protein-coupled receptors (GPCRs) are, arguably, one of the most important molecular targets in drug discovery and pharmaceutical development today. This superfamily of membrane receptors is central to nearly every signaling pathway in the human body and has been the focus of intense research for decades. However, as scientists discover additional properties of GPCRs, it has become clear that much is yet to be understood about how these receptors function. Everyone agrees, however, that tremendous potential remains if specific GPCR signaling pathways can be modulated to correct pathological states. One exciting new approach to this challenge involves pepducins: novel, synthetic lipopeptide pharmacophores that modulate heptahelical GPCR activity from inside the cell membrane.
Related JoVE Video
Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis.
Cancer Res.
PUBLISHED: 07-21-2009
Show Abstract
Hide Abstract
Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor that is not expressed in normal breast epithelia but is up-regulated in invasive breast carcinomas. In the present study, we found that matrix metalloprotease-1 (MMP-1) robustly activates the PAR1-Akt survival pathway in breast carcinoma cells. This process is blocked by a cell-penetrating lipopeptide "pepducin," P1pal-7, which is a potent inhibitor of cell viability in breast carcinoma cells expressing PAR1. Both a MMP-1 inhibitor and P1pal-7 significantly promote apoptosis in breast tumor xenografts and inhibit metastasis to the lungs by up to 88%. Dual therapy with P1pal-7 and Taxotere inhibits the growth of MDA-MB-231 xenografts by 95%. Consistently, biochemical analysis of xenograft tumors treated with P1pal-7 or MMP-1 inhibitor showed attenuated Akt activity. Ectopic expression of constitutively active Akt rescues breast cancer cells from the synergistic cytotoxicity of P1pal-7 and Taxotere, suggesting that Akt is a critical component of PAR1-dependent cancer cell viability. Together, these findings indicate that blockade of MMP1-PAR1 signaling may provide a benefit beyond treatment with Taxotere alone in advanced, metastatic breast cancer.
Related JoVE Video
G-protein-coupled receptors as signaling targets for antiplatelet therapy.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 04-03-2009
Show Abstract
Hide Abstract
Platelet G protein-coupled receptors (GPCRs) initiate and reinforce platelet activation and thrombus formation. The clinical utility of antagonists of the P2Y(12) receptor for ADP suggests that other GPCRs and their intracellular signaling pathways may represent viable targets for novel antiplatelet agents. For example, thrombin stimulation of platelets is mediated by 2 protease-activated receptors (PARs), PAR-1 and PAR-4. Signaling downstream of PAR-1 or PAR-4 activates phospholipase C and protein kinase C and causes autoamplification by production of thromboxane A(2), release of ADP, and generation of more thrombin. In addition to ADP receptors, thrombin and thromboxane A(2) receptors and their downstream effectors-including phosphoinositol-3 kinase, Rap1b, talin, and kindlin-are promising targets for new antiplatelet agents. The mechanistic rationale and available clinical data for drugs targeting disruption of these signaling pathways are discussed. The identification and development of new agents directed against specific platelet signaling pathways may offer an advantage in preventing thrombotic events while minimizing bleeding risk.
Related JoVE Video
Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site.
Cell
PUBLISHED: 02-05-2009
Show Abstract
Hide Abstract
Matrix metalloproteases (MMPs) play important roles in normal and pathological remodeling processes including atherothrombotic disease, inflammation, angiogenesis, and cancer. MMPs have been viewed as matrix-degrading enzymes, but recent studies have shown that they possess direct signaling capabilities. Platelets harbor several MMPs that modulate hemostatic function and platelet survival; however their mode of action remains unknown. We show that platelet MMP-1 activates protease-activated receptor-1 (PAR1) on the surface of platelets. Exposure of platelets to fibrillar collagen converts the surface-bound proMMP-1 zymogen to active MMP-1, which promotes aggregation through PAR1. Unexpectedly, MMP-1 cleaves PAR1 at a distinct site that strongly activates Rho-GTP pathways, cell shape change and motility, and MAPK signaling. Blockade of MMP1-PAR1 curtails thrombogenesis under arterial flow conditions and inhibits thrombosis in animals. These studies provide a link between matrix-dependent activation of metalloproteases and platelet-G protein signaling and identify MMP1-PAR1 as a potential target for the prevention of arterial thrombosis.
Related JoVE Video
Matrix metalloproteases and PAR1 activation.
Blood
Show Abstract
Hide Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Related JoVE Video
Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin.
Circulation
Show Abstract
Hide Abstract
Thrombin-dependent platelet activation is heightened in the setting of percutaneous coronary intervention and may cause arterial thrombosis with consequent myocardial necrosis. Given the high incidence of adverse effects in patients with acute coronary syndromes, there remains an unmet need for the development of new therapeutics that target platelet activation without unduly affecting hemostasis. The thrombin receptor, PAR1, has recently emerged as a promising new target for therapeutic intervention in patients with acute coronary syndromes.
Related JoVE Video
Matrix metalloprotease-1a promotes tumorigenesis and metastasis.
J. Biol. Chem.
Show Abstract
Hide Abstract
Matrix metalloprotease-1 (MMP1), a collagenase and activator of the G protein-coupled protease activated receptor-1 (PAR1), is an emerging new target implicated in oncogenesis and metastasis in diverse cancers. However, the functional mouse homologue of MMP1 in cancer models has not yet been clearly defined. We report here that Mmp1a is a functional MMP1 homologue that promotes invasion and metastatic progression of mouse lung cancer and melanoma. LLC1 (Lewis lung carcinoma) and primary mouse melanoma cells harboring active BRAF express high levels of endogenous Mmp1a, which is required for invasion through collagen. Silencing of either Mmp1a or PAR1 suppressed invasive stellate growth of lung cancer cells in three-dimensional matrices. Conversely, ectopic expression of Mmp1a conferred an invasive phenotype in epithelial cells that do not express endogenous Mmp1a. Consistent with Mmp1a acting as a PAR1 agonist in an autocrine loop, inhibition or silencing of PAR1 resulted in a loss of the Mmp1a-driven invasive phenotype. Knockdown of Mmp1a on tumor cells resulted in significantly decreased tumorigenesis, invasion, and metastasis in xenograft models. Together, these data demonstrate that cancer cell-derived Mmp1a acts as a robust functional homologue of MMP1 by conferring protumorigenic and metastatic behavior to cells.
Related JoVE Video
Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development.
J. Biol. Chem.
Show Abstract
Hide Abstract
G-protein-coupled receptors (GPCRs) are a large family of remarkably versatile membrane proteins that are attractive therapeutic targets because of their involvement in a vast range of normal physiological processes and pathological diseases. Upon activation, intracellular domains of GPCRs mediate signaling to G-proteins, but these domains have yet to be effectively exploited as drug targets. Cell-penetrating lipidated peptides called pepducins target specific intracellular loops of GPCRs and have recently emerged as effective allosteric modulators of GPCR activity. The lipid moiety facilitates translocation across the plasma membrane, where pepducins then specifically modulate signaling of their cognate receptor. To date, pepducins and related lipopeptides have been shown to specifically modulate the activity of diverse GPCRs and other membrane proteins, including protease-activated receptors (PAR1, PAR2, and PAR4), chemokine receptors (CXCR1, CXCR2, and CXCR4), sphingosine 1-phosphate receptor-3 (S1P3), the melanocortin-4 receptor, the Smoothened receptor, formyl peptide receptor-2 (FPR2), the relaxin receptor (LGR7), G-proteins (G?(q/11/o/13)), muscarinic acetylcholine receptor and vanilloid (TRPV1) channels, and the GPIIb integrin. This minireview describes recent advances made using pepducin technology in targeting diverse GPCRs and the use of pepducins in identifying potential novel drug targets.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.