JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.
Nanoscale
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm(-1) electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 ?m to 75 ?m separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health.
Related JoVE Video
High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films.
Small
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
The design and fabrication of strong, lightweight, and damage-resistant composite materials are major topics of studies on composites. Biomimetics, a developing multidisciplinary field, is now leading the fabrication of novel materials with remarkable mechanical properties. Graphene oxide (GO), a graphene derivative, possesses good mechanical properties, a high aspect ratio, and good solubility in aqueous solutions, indicating great potential in nanocomposite fields. In this work, bioinspired layered GO/poly(vinyl alcohol) (PVA) nanocomposite films with remarkable mechanical performances are prepared by an environmental friendly, bottom-up assembly methodology. The structural analysis shows alternate piles of inorganic GO platelets and organic PVA binder. Tensile tests indicate that the borate-treated GO/PVA nanocomposite films display 360 MPa of strength, which is twofold to threefold higher than that of biological materials (e.g., nacre). Toughness of GO/PVA nanocomposites is also enhanced fourfold compared with nacre. To reveal the toughening function of the intercalated polymer in the nanocomposites, the influence of polymer with varied molecular weights (Mws) on the fracture mode of the nanocomposites is systematically investigated through quasi-static tensile and creep tests. The PVA molecules with a higher Mw can connect more neighboring GO platelets through inter- and intra-linkages than those with a lower Mw, resulting in efficient stress transfer along the GO plane direction. Thus, tensile strength and toughness are improved. This work illustrates the functions of bonding types between inorganic-organic phases and intercalated polymers with different Mws on the mechanical properties of the layered nanocomposites, including stiffness, strength, and toughness.
Related JoVE Video
Site-selective assembly of quantum dots on patterned self-assembled monolayers fabricated by laser direct-writing.
Nanotechnology
Show Abstract
Hide Abstract
A simple and efficient route for quantum dot (QDs) patterning using self-assembled monolayers (SAMs) as templates is described. By means of a laser direct-writing (LDW) technique, SAMs of octadecylphosphonic acid formed by adsorption on native oxide layer of titanium film were patterned through laser-induced ablation of the SAM molecules. This technique allows the creation of chemical-specific patterns accompanied by slight change in the topography. Using atomic force microscopy and friction force microscopy, the dependence of feature size and characteristics on the irradiation dose was demonstrated. Upon immersion of a substrate with patterned SAMs bearing thiol as the terminal group into a dispersion of QDs resulted in the assembly of QDs on the specific thiol-terminated areas. Patterns of QDs with different photoluminescent wavelength were generated. The LDW technique, which is convenient and flexible due to its path-directed and maskless fabrication process, provided a new powerful approach for patterning materials on surfaces for various applications.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.