JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging.
J. Nucl. Med.
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists.
Related JoVE Video
[111In-DOTA]LTT-SS28, a first pansomatostatin radioligand for in vivo targeting of somatostatin receptor-positive tumors.
J. Med. Chem.
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and <3% ID/g, respectively, with values of <0.5% ID/g during receptor blockade). In conclusion, the somatostatin mimic [111In-DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.
Related JoVE Video
Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas.
Mod. Pathol.
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting.Modern Pathology advance online publication, 12 September 2014; doi:10.1038/modpathol.2014.113.
Related JoVE Video
The Glucose-Dependent Insulinotropic Polypeptide Receptor: A Novel Target for Neuroendocrine Tumor Imaging-First Preclinical Studies.
J. Nucl. Med.
PUBLISHED: 04-17-2014
Show Abstract
Hide Abstract
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors.
Related JoVE Video
PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists.
Nucl. Med. Biol.
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
The gastrin-releasing peptide receptor (GRPR) was shown to be expressed with high density on several types of cancers. Radiolabeled peptides for imaging and targeted radionuclide therapy have been developed. In this study, we evaluated the potential of statine-based bombesin antagonists, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) through oligoethyleneglycol spacers, labeled with (177)Lu and we determined the effect of polyethyleneglycol (PEG) spacer length on in vitro and in vivo properties.
Related JoVE Video
Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the (125)iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer (125)I-GLP-1(7-36)amide.
Related JoVE Video
Syntheses, Receptor Bindings, in vitro and in vivo Stabilities and Biodistributions of DOTA-Neurotensin(8-13) Derivatives Containing ?-Amino Acid Residues - A Lesson about the Importance of Animal Experiments.
Chem. Biodivers.
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal ?-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.?1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table?2). Most of the ?-amino acid-containing NTS(8-13) analogs (Table?1 and Fig.?2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.?2 and 5), are stable for ca. 1?h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60?min (Figs.?3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.?6). Comparison of the in vitro plasma stability (after 1?h) with the ex vivo blood content (after 10-15?min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.?5).
Related JoVE Video
[DOTA]Somatostatin-14 analogs and their (111)In-radioligands: Effects of decreasing ring-size on sst1-5 profile, stability and tumor targeting.
Eur J Med Chem
PUBLISHED: 08-14-2013
Show Abstract
Hide Abstract
Multiple somatostatin receptor (sst)-subtype expression has been manifested in several human tumors. Hence, the availability of radiopeptides retaining the full pansomatostatin profile of the native hormone (SS14) is expected to increase the sensitivity and broaden the clinical indications of currently applied sst2-preferring cyclic octapeptide radioligands, like OctreoScan(®) ([(111)In-DTPA]octreotide). On the other hand, SS14 has been excluded from clinical use due to its rapid in vivo degradation. We herein present a small library of seven novel cyclic SS14-mimics carrying at their N-terminus the universal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for stable binding of medically useful radiometals, like (111)In. By decreasing the number of amino acids composing the ring in their structure from 12 up to 6 AA, we induced important changes in key-biological parameters in vitro and in vivo. In particular, we observed unexpected changes and even total loss of sst1-5-affinity (6AA-ring), as well as weaker sst2-internalization efficacy as the ring size decreased. In contrast, in vivo stability increased with decreasing ring size, reaching its maximum in the 6AA-ring analogs. Interestingly, only the 12AA- and 9AA-ring members of this series showed sst2-specific uptake in AR4-2J tumors in mice revealing the prominent role of ring size on the biological response of tested SS14-derived radioligands.
Related JoVE Video
Early over-expression of GRP receptors in prostatic carcinogenesis.
Prostate
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
The GRP receptor shows high over-expression in prostatic adenocarcinoma and high grade PIN, but low expression in normal prostate glands. This represents the molecular basis for GRP receptor imaging of prostate cancer with radioactive compounds. However, a focal, high density GRP receptor expression can be observed in hitherto uncharacterized prostate glands.
Related JoVE Video
Glucose-dependent insulinotropic polypeptide receptors in most gastroenteropancreatic and bronchial neuroendocrine tumors.
J. Clin. Endocrinol. Metab.
PUBLISHED: 11-23-2011
Show Abstract
Hide Abstract
Gastrointestinal peptide hormone receptors overexpressed in neuroendocrine tumors (NET), such as somatostatin or glucagon-like peptide-1 (GLP-1) receptors, are used for in vivo tumor targeting. Unfortunately, not all NET express these receptors sufficiently.
Related JoVE Video
Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro.
J. Nucl. Med.
PUBLISHED: 11-08-2011
Show Abstract
Hide Abstract
Somatostatin receptor targeting of neuroendocrine tumors using radiolabeled somatostatin agonists is today an established method to image and treat cancer patients. However, in a study using an animal tumor model, somatostatin receptor antagonists were shown to label sst(2)- and sst(3)-expressing tumors in vivo better than agonists, with comparable affinity even though they are not internalized into the tumor cell. In the present study, we evaluated the in vitro binding of the antagonist (177)Lu-DOTA-pNO(2)-Phe-c (DCys-Tyr-DTrp-Lys-Thr-Cys) DTyrNH(2) ((177)Lu-DOTA-BASS) or the (177)Lu-DOTATATE agonist to sst(2)-expressing human tumor samples.
Related JoVE Video
N-imidazolebenzyl-histidine substitution in somatostatin and in its octapeptide analogue modulates receptor selectivity and function.
J. Med. Chem.
PUBLISHED: 08-16-2011
Show Abstract
Hide Abstract
Despite 3 decades of focused chemical, biological, structural, and clinical developments, unusual properties of somatostatin (SRIF, 1) analogues are still being uncovered. Here we report the unexpected functional properties of 1 and the octapeptide cyclo(3-14)H-Cys-Phe-Phe-Trp(8)-Lys-Thr-Phe-Cys-OH (somatostatin numbering; OLT-8, 9) substituted by imBzl-l- or -d-His at position 8. These analogues were tested for their binding affinity to the five human somatostatin receptors (sst(1-5)), as well as for their functional properties (or functionalities) in an sst(3) internalization assay and in an sst(3) luciferase reporter gene assay. While substitution of Trp(8) in somatostatin by imBzl-l- or -d-His(8) results in sst(3) selectivity, substitution of Trp(8) in the octapeptide 9 by imBzl-l- or -d-His(8) results in loss of binding affinity for sst(1,2,4,5) and a radical functional switch from agonist to antagonist.
Related JoVE Video
Characterization of a novel five-transmembrane domain cholecystokinin-2 receptor splice variant identified in human tumors.
Mol. Cell. Endocrinol.
PUBLISHED: 07-06-2011
Show Abstract
Hide Abstract
The cholecystokinin-2 receptor (CCK2R), is expressed in cancers where it contributes to tumor progression. The CCK2R is over-expressed in a sub-set of tumors, allowing its use in tumor targeting with a radiolabel ligand. Since discrepancies between mRNA levels and CCK2R binding sites were noticed, we searched for abnormally spliced variants in tumors from various origins having been previously reported to frequently express cholecystokinin receptors, such as medullary thyroid carcinomas, gastrointestinal stromal tumors, leiomyomas and leiomyosarcomas, and gastroenteropancreatic tumors. A variant of the CCK2R coding for a putative five-transmembrane domains receptor has been cloned. This variant represented as much as 6% of CCK2R levels. Ectopic expression in COS-7 cells revealed that this variant lacks biological activity due to its sequestration in endoplasmic reticulum. When co-expressed with the CCK2R, this variant diminished membrane density of the CCK2R and CCK2R-mediated activity (phospholipase-C and ERK activation). In conclusion, a novel splice variant acting as a dominant negative on membrane density of the CCK2R may be of importance for the pathophysiology of certain tumors and for their in vivo CCK2R-targeting.
Related JoVE Video
PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference.
J. Nucl. Med.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Somatostatin-based radiolabeled peptides have been successfully introduced into the clinic for targeted imaging and radionuclide therapy of somatostatin receptor (sst)-positive tumors, especially of subtype 2 (sst2). The clinically used peptides are exclusively agonists. Recently, we showed that radiolabeled antagonists may be preferable to agonists because they showed better pharmacokinetics, including higher tumor uptake. Factors determining the performance of radioantagonists have only scarcely been studied. Here, we report on the development and evaluation of four (64)Cu or (68)Ga radioantagonists for PET of sst2-positive tumors.
Related JoVE Video
On the terminal homologation of physiologically active peptides as a means of increasing stability in human serum--neurotensin, opiorphin, B27-KK10 epitope, NPY.
Chem. Biodivers.
PUBLISHED: 05-12-2011
Show Abstract
Hide Abstract
The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a ?(2) - and of the C-terminal amino acid residue by a ?(3) -homo-amino acid moiety (?(2) hXaa and ?(3) hXaa, resp.; Fig.?1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs.?2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table?1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6?nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig.?6). An NMR analysis of NT(8-13) (Tables?2 and 4, and Fig.?8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (?3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig.?9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig.?7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig.?5), and possible applications of the neurotensin analogs, described herein, are discussed.
Related JoVE Video
Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers.
EJNMMI Res
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Several peptide hormone receptors were identified that are specifically over-expressed on the cell surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y (NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when compared to agonists. We report here on the first DOTA-coupled peptidic Y1 receptor affine dimer antagonists.
Related JoVE Video
Concomitant vascular GRP-receptor and VEGF-receptor expression in human tumors: molecular basis for dual targeting of tumoral vasculature.
Peptides
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
Gastrin-releasing peptide (GRP) and GRP receptors (GRPR) play a role in tumor angiogenesis. Recently, GRPR were found to be frequently expressed in the vasculature of a large variety of human cancers. Here, we characterize these GRPR by comparing the vascular GRPR expression and localization in a selection of human cancers with that of an established biological marker of neoangiogenesis, the vascular endothelial growth factor (VEGF) receptor. In vitro quantitative receptor autoradiography was performed in parallel for GRPR and VEGF receptors (VEGFR) in 32 human tumors of various origins, using ¹²?I-Tyr-bombesin and ¹²?I-VEGF??? as radioligands, respectively. Moreover, VEGFR-2 was evaluated immunohistochemically. All tumors expressed GRPR and VEGFR in their vascular system. VEGFR were expressed in the endothelium in the majority of the vessels. GRPR were expressed in a subpopulation of vessels, preferably in their muscular coat. The vessels expressing GRPR were all VEGFR-positive whereas the VEGFR-expressing vessels were not all GRPR-positive. GRPR expressing vessels were found immunohistochemically to co-express VEGFR-2. Remarkably, the density of vascular GRPR was much higher than that of VEGFR. The concomitant expression of GRPR with VEGFR appears to be a frequent phenomenon in many human cancers. The GRPR, localized and expressed in extremely high density in a subgroup of vessels, may function as target for antiangiogenic tumor therapy or angiodestructive targeted radiotherapy with radiolabeled bombesin analogs alone, or preferably together with VEGFR targeted therapy.
Related JoVE Video
Comparison of the binding and internalization properties of 12 DOTA-coupled and ¹¹¹In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project.
Related JoVE Video
Highly improved metabolic stability and pharmacokinetics of indium-111-DOTA-gastrin conjugates for targeting of the gastrin receptor.
J. Med. Chem.
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
The development of metabolically stable radiolabeled gastrin analogues with suitable pharmacokinetics is a topic of recent research activity. These imaging vectors are of interest because the gastrin/CCK2 receptor is highly overexpressed in different tumors such as medullary thyroid cancer, neuroendocrine tumors, and SCLC. The drawback of current targeting agents is either their metabolic instability or their high kidney uptake. We present the synthesis and in vitro and in vivo evaluation of 11 (111)In-labeled DOTA-conjugated peptides that differ by their spacer between the peptide and the chelate. We introduced uncharged but hydrophilic spacers such as oligoethyleneglycol, serine, and glutamine. The affinity of all radiopeptides was high with IC(50) values between 0.5 and 4.8 nM. The improvement of human serum stability is 500-fold within this series of compounds. In addition the kidney uptake could be lowered distinctly and the tumor-to-kidney ratio improved almost 60-fold if compared with radiotracers having charged spacers such as glutamic acid.
Related JoVE Video
Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy.
Neuroendocrinology
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
While incretins are of great interest for the therapy of diabetes 2, the focus has recently been brought to the thyroid, since rodents treated with glucagon-like peptide-1 (GLP-1) analogs were found to occasionally develop medullary thyroid carcinomas. Incretin receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) were therefore measured in various rodent and human thyroid conditions. In vitro GLP-1 and GIP receptor autoradiography were performed in normal thyroids, C-cell hyperplasia and medullary thyroid carcinomas in rodents. Receptor incidence and density were assessed and compared with the receptor expression in human thyroids, medullary thyroid carcinomas, and TT cells. GLP-1 receptors are expressed in C cells of normal rat and mice thyroids. Their density is markedly increased in rat C-cell hyperplasia and medullary thyroid carcinomas, where their incidence amounts to 100%. GIP receptors are neither detected in normal rodent thyroids nor in C-cell hyperplasia, but are present in all rat medullary thyroid carcinomas. No GLP-1 or GIP receptors are detected in normal human thyroids. Whereas only 27% of all human medullary thyroid carcinomas express GLP-1 receptors, up to 89% express GIP receptors in a high density. TT cells lack GLP-1 receptors but express GIP receptors. GLP-1 receptors are frequently expressed in non-neoplastic and neoplastic C cells in rodents while they are rarely detected in human C-cell neoplasia, suggesting species differences. Conversely, GIP receptors appear to be massively overexpressed in neoplastic C cells in both species. The presence of incretin receptors in thyroid C cell lesions suggests that this organ should be monitored before and during incretin-based therapy of diabetes.
Related JoVE Video
Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans.
Related JoVE Video
One-step ¹?F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET).
Bioconjug. Chem.
PUBLISHED: 11-17-2010
Show Abstract
Hide Abstract
The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac?AcNH-?-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/?mol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC?? = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-?-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹?F]SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.
Related JoVE Video
Neuropeptide Y acts within the rat testis to inhibit testosterone secretion.
Neuropeptides
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5?g/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Related JoVE Video
Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as (111)In and (68)Ga.
Related JoVE Video
Absence of somatostatin SST(2) receptor internalization in vivo after intravenous SOM230 application in the AR42J animal tumor model.
Eur. J. Pharmacol.
PUBLISHED: 03-16-2010
Show Abstract
Hide Abstract
Among clinically relevant somatostatin functions, agonist-induced somatostatin receptor subtype 2 (sst(2)) internalization is a potent mechanism for tumor targeting with sst(2) affine radioligands such as octreotide. Since, as opposed to octreotide, the second generation multi-somatostatin analog SOM230 (pasireotide) exhibits strong functional selectivity, it appeared of interest to evaluate its ability to affect sst(2) internalization in vivo. Rats bearing AR42J tumors endogenously expressing somatostatin sst(2) receptors were injected intravenously with SOM230 or with the [Tyr(3), Thr(8)]-octreotide (TATE) analog; they were euthanized at various time points; tumors and pancreas were analyzed by immunohistochemistry for the cellular localization of somatostatin sst(2) receptors. SOM230-induced sst(2) internalization was also evaluated in vitro by immunofluorescence microscopy in AR42J cells. At difference to the efficient in vivo sst(2) internalization triggered by intravenous [Tyr(3), Thr(8)]-octreotide, intravenous SOM230 did not elicit sst(2) internalization: immunohistochemically stained sst(2) in AR42J tumor cells and pancreatic cells were detectable at the cell surface at 2.5min, 10min, 1h, 6h, or 24h after SOM230 injection while sst(2) were found intracellularly after [Tyr(3), Thr(8)]-octreotide injection. The inability of stimulating sst(2) internalization by SOM230 was confirmed in vitro in AR42J cells by immunofluorescence microscopy. Furthermore, SOM230 was unable to antagonize agonist-induced sst(2) internalization, neither in vivo, nor in vitro. Therefore, SOM230 does not induce sst(2) internalization in vivo or in vitro in AR42J cells and pancreas, at difference to octreotide derivatives with comparable sst(2) binding affinities. These characteristics may point towards different tumor targeting but also to different desensitization properties of clinically applied SOM230.
Related JoVE Video
Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients.
J. Clin. Endocrinol. Metab.
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
Somatostatin receptor subtype 2 (sst(2)) is widely expressed in neuroendocrine tumors and can be visualized immunohistochemically at the cell membrane for diagnostic purposes. Recently, it has been demonstrated in animal sst(2) tumor models in vivo that somatostatin analog treatment was able to induce a complete internalization of the tumor sst(2).
Related JoVE Video
Switch from antagonist to agonist after addition of a DOTA chelator to a somatostatin analog.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 03-08-2010
Show Abstract
Hide Abstract
Peptide receptor targeting has become an increasingly attractive method to target tumors diagnostically and radiotherapeutically. Peptides linked to a variety of chelators have been developed for this purpose. They have, however, rarely been tested for their agonistic or antagonistic properties. We report here on a somatostatin antagonist that switched to an agonist upon coupling to a DOTA chelator.
Related JoVE Video
Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways.
Mol. Endocrinol.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
Somatostatin analogs that activate the somatostatin subtype 2A (sst2A) receptor are used to treat neuroendocrine cancers because they inhibit tumor secretion and growth. Recently, new analogs capable of activating multiple somatostatin receptor subtypes have been developed to increase tumor responsiveness. We tested two such multi-somatostatin analogs for functional selectivity at the sst2A receptor: SOM230, which activates sst1, sst2, sst3, and sst5 receptors, and KE108, which activates all sst receptor subtypes. Both compounds are reported to act as full agonists at their target sst receptors. In sst2A-expressing HEK293 cells, somatostatin inhibited cAMP production, stimulated intracellular calcium accumulation, and increased ERK phosphorylation. SOM230 and KE108 were also potent inhibitors of cAMP accumulation, as expected. However, they antagonized somatostatin stimulation of intracellular calcium and behaved as partial agonists/antagonists for ERK phosphorylation. In pancreatic AR42J cells, which express sst2A receptors endogenously, SOM230 and KE108 were both full agonists for cAMP inhibition. However, although somatostatin increased intracellular calcium and ERK phosphorylation, SOM230 and KE108 again antagonized these effects. Distinct mechanisms were involved in sst2A receptor signaling in AR42J cells; pertussis toxin pretreatment blocked somatostatin inhibition of cAMP accumulation but not the stimulation of intracellular calcium and ERK phosphorylation. Our results demonstrate that SOM230 and KE108 behave as agonists for inhibition of adenylyl cyclase but antagonize somatostatins actions on intracellular calcium and ERK phosphorylation. Thus, SOM230 and KE108 are not somatostatin mimics, and their functional selectivity at sst2A receptors must be considered in clinical applications where it may have important consequences for therapy.
Related JoVE Video
Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides.
Clin. Cancer Res.
PUBLISHED: 08-11-2009
Show Abstract
Hide Abstract
G protein-coupled receptor agonists are being used as radiolabeled vectors for in vivo localization and therapy of tumors. Recently, somatostatin-based antagonists were shown to be superior to agonists. Here, we compare the new [111In/68Ga]-labeled bombesin-based antagonist RM1 with the agonist [111In]-AMBA for targeting the gastrin-releasing peptide receptor (GRPR).
Related JoVE Video
CCK(2) receptor splice variant with intron 4 retention in human gastrointestinal and lung tumours.
J. Cell. Mol. Med.
PUBLISHED: 07-20-2009
Show Abstract
Hide Abstract
The wild-type cholecystokinin type 2 (CCK(2)) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK(2) receptor with retention of intron 4 (CCK(2)Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK(2) receptor, wild-type CCK(2) receptor and CCK(2)Ri4sv with end-point and real-time RT-PCR, and for total CCK(2) receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK(2) receptor transcripts were found in the vast majority of tumours and normal tissues. CCK(2)Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK(2) receptor negative tumours or any normal tissues tested. CCK(2)Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK(2) receptor transcripts. In conclusion, the CCK(2)Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.
Related JoVE Video
High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications.
Endocr. Relat. Cancer
PUBLISHED: 05-30-2009
Show Abstract
Hide Abstract
Tumoral gastrin-releasing peptide (GRP) receptors are potential targets for diagnosis and therapy using radiolabeled or cytotoxic GRP analogs. GRP-receptor overexpression has been detected in endocrine-related cancer cells and, more recently, also in the vascular bed of selected tumors. More information on vascular GRP-receptors in cancer is required to asses their potential for vascular targeting applications. Therefore, frequent human cancers (n = 368) were analyzed using in vitro GRP-receptor autoradiography on tissue sections with the (125)I-[Tyr(4)]-bombesin radioligand and/or the universal radioligand (125)I-[d-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14). GRP-receptor expressing vessels were evaluated in each tumor group for prevalence, quantity (vascular score), and GRP-receptor density. Prevalence of vascular GRP-receptors was variable, ranging from 12% (prostate cancer) to 92% (urinary tract cancer). Different tumor types within a given site had divergent prevalence of vascular GRP-receptors (e.g. lung: small cell cancer: 0%; adenocarcinoma: 59%; squamous carcinoma: 83%). Also the vascular score varied widely, with the highest score in urinary tract cancer (1.69), moderate scores in lung (0.91), colon (0.88), kidney (0.84), and biliary tract (0.69) cancers and low scores in breast (0.39) and prostate (0.14) cancers. Vascular GRP-receptors were expressed in the muscular vessel wall in moderate to high densities. Normal non-neoplastic control tissues from these organs lacked vascular GRP-receptors. In conclusion, tumoral vessels in all evaluated sites express GRP-receptors, suggesting a major biological function of GRP-receptors in neovasculature. Vascular GRP-receptor expression varies between the tumor types indicating tumor-specific mechanisms in their regulation. Urinary tract cancers express vascular GRP-receptors so abundantly, that they are promising candidates for vascular targeting applications.
Related JoVE Video
Novel, potent, and radio-iodinatable somatostatin receptor 1 (sst1) selective analogues.
J. Med. Chem.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.
Related JoVE Video
Synthesis and in vitro characterization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors.
J. Med. Chem.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.
Related JoVE Video
Conformationally homogeneous heterocyclic pseudotetrapeptides as three-dimensional scaffolds for rational drug design: receptor-selective somatostatin analogues.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
A would-be amide: A 1,4-disubstituted 1,2,3-triazole was used as a surrogate for a trans amide bond to create a library of 16 diastereomeric pseudotetrapeptides as beta-turn mimetics. High-resolution structural analysis indicated that these scaffolds adopt distinct, rigid, conformationally homogeneous beta-turn-like structures (see example), some of which bind somatostatin receptor subtypes selectively, and some of which show broad-spectrum activity.
Related JoVE Video
Evolution of bombesin conjugates for targeted PET imaging of tumors.
PLoS ONE
Show Abstract
Hide Abstract
Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and pharmacokinetics. This enabled development of a novel (64/67)Cu-labeled BN peptide for PET imaging and targeted radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged ligands (IC(50): 3.2±0.5 vs 26.3±3.5 vs 41.5±2.5 nM). The replacement of Nle(14) by Met, and deletion of D-Tyr(6), further resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal and at the 6(th), 11(th), and 14(th) position of BN induced only slight influences on affinity to mouse GRPr. [Cu(II)]-CPTA-[?Ala(11)] BN(7-14) ([Cu(II)]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its subnanomolar affinity to GRPr. Interestingly, [(64/67)Cu]-BZH7 also displayed similar affinities to the other 2 human BN receptor subtypes. In vivo studies showed that [(64/67)Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer, enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [(64/67)Cu]-BZH7 to clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting carcinomas that express any of the BN receptor subtypes.
Related JoVE Video
[(99m)Tc]Demomedin C, a radioligand based on human gastrin releasing peptide(18-27): synthesis and preclinical evaluation in gastrin releasing peptide receptor-expressing models.
J. Med. Chem.
Show Abstract
Hide Abstract
The synthesis and preclinical evaluation of [(99m)Tc]Demomedin C in GRPR-expressing models are reported. Demomedin C resulted by coupling a Boc-protected N(4)-chelator to neuromedin C (human GRP(18-27)), which, after (99m)Tc-labeling, afforded [(99m)Tc]Demomedin C. Demomedin C showed high affinity and selectivity for the GRPR during receptor autoradiography on human cancer samples (IC(50) in nM: GRPR, 1.4 ± 0.2; NMBR, 106 ± 18; and BB(3)R, >1000). It triggered GRPR internalization in HEK-GRPR cells and Ca(2+) release in PC-3 cells (EC(50) = 1.3 nM). [(99m)Tc]Demomedin C rapidly and specifically internalized at 37 °C in PC-3 cells and was stable in mouse plasma. [(99m)Tc]Demomedin C efficiently and specifically localized in human PC-3 implants in mice (9.84 ± 0.81%ID/g at 1 h pi; 6.36 ± 0.85%ID/g at 4 h pi, and 0.41 ± 0.07%ID/g at 4 h pi block). Thus, human GRP-based radioligands, such as [(99m)Tc]Demomedin C, can successfully target GRPR-expressing human tumors in vivo while displaying attractive biological features--e.g. higher GRPR-selectivity--vs their frog-homologues.
Related JoVE Video
Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications.
J. Nucl. Med.
Show Abstract
Hide Abstract
Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.
Related JoVE Video
Secretin receptor promotes the proliferation of endocrine tumor cells via the PI3K/AKT pathway.
Mol. Endocrinol.
Show Abstract
Hide Abstract
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Related JoVE Video
[111In-DOTA]Somatostatin-14 analogs as potential pansomatostatin-like radiotracers - first results of a preclinical study.
EJNMMI Res
Show Abstract
Hide Abstract
In this study, we report on the synthesis, radiolabeling, and biological evaluation of two new somatostatin-14 (SS14) analogs, modified with the universal chelator DOTA. We were interested to investigate if and to what extent such radiotracer prototypes may be useful for targeting sst1-5-expressing tumors in man but, most importantly, to outline potential drawbacks and benefits associated with their use.
Related JoVE Video
Phosphorylation of sst2 receptors in neuroendocrine tumors after octreotide treatment of patients.
Am. J. Pathol.
Show Abstract
Hide Abstract
Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.
Related JoVE Video
Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting.
Am. J. Surg. Pathol.
Show Abstract
Hide Abstract
High overexpression of somatostatin receptors in neuroendocrine tumors allows imaging and radiotherapy with radiolabeled somatostatin analogues. To ascertain whether a tumor is suitable for in vivo somatostatin receptor targeting, its somatostatin receptor expression has to be determined. There are specific indications for use of immunohistochemistry for the somatostatin receptor subtype 2A, but this has up to now been limited by the lack of an adequate reliable antibody. The aim of this study was to correlate immunohistochemistry using the new monoclonal anti-somatostatin receptor subtype 2A antibody UMB-1 with the gold standard in vitro method quantifying somatostatin receptor levels in tumor tissues. A UMB-1 immunohistochemistry protocol was developed, and tumoral UMB-1 staining levels were compared with somatostatin receptor binding site levels quantified with in vitro I-[Tyr]-octreotide autoradiography in 89 tumors. This allowed defining an immunohistochemical staining threshold permitting to distinguish tumors with somatostatin receptor levels high enough for clinical applications from those with low receptor expression. The presence of >10% positive tumor cells correctly predicted high receptor levels in 95% of cases. In contrast, absence of UMB-1 staining truly reflected low or undetectable somatostatin receptor expression in 96% of tumors. If 1% to 10% of tumor cells were stained, a weak staining intensity was suggestive of low somatostatin receptor levels. This study allows for the first time a reliable recommendation for eligibility of an individual patient for in vivo somatostatin receptor targeting based on somatostatin receptor immunohistochemistry. Under optimal methodological conditions, UMB-1 immunohistochemistry may be equivalent to in vitro receptor autoradiography.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.