JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells.
Cancer Res.
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
Cancer stem cells (CSC) are thought to play a major role in the development and metastatic progression of pancreatic ductal adenocarcinoma (PDAC), one of the deadliest solid tumors. Likewise, the tumor microenvironment contributes critical support in this setting, including from tumor stromal cells and tumor-associated macrophages (TAM) that contribute structural and paracrine-mediated supports, respectively. Here we show that TAM secrete the interferon-stimulated factor ISG15 which enhances CSC phenotypes in PDAC in vitro and in vivo. ISG15 was preferentially and highly expressed by TAM present in primary PDAC tumors resected from patients. ISG15 was secreted by macrophages in response to secretion of interferon-beta; by CSC, thereby reinforcing CSC self-renewal, invasive capacity and tumorigenic potential. Overall, our work demonstrates that ISG15 is a previously unrecognized support factor for CSC in the PDAC microenvironment with a key role in pathogenesis and progression.
Related JoVE Video
Induction of Apoptosis in Colon Cancer Cells Treated with Isorhamnetin Glycosides from Opuntia Ficus-indica Pads.
Plant Foods Hum Nutr
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
(OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9?±?0.5 ?g/mL) and against Caco2 (8.2?±?0.3 ?g/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.
Related JoVE Video
Correlation between corpus callosum sub-segmental area and cognitive processes in school-age children.
PLoS ONE
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood.
Related JoVE Video
Effects of PDE type 5 inhibitors on Left Ventricular Diastolic Dysfunction in Resistant Hypertension.
Arq. Bras. Cardiol.
PUBLISHED: 05-25-2014
Show Abstract
Hide Abstract
Resistant hypertension (RHTN) is a multifactorial disease characterized by blood pressure (BP) levels above goal (140/90 mmHg) in spite of the concurrent use of three or more antihypertensive drugs of different classes. Moreover, it is well known that RHTN subjects have high prevalence of left ventricular diastolic dysfunction (LVDD), which leads to increased risk of heart failure progression. This review gathers data from studies evaluating the effects of phosphodiesterase-5 (PDE-5) inhibitors (administration of acute sildenafil and short-term tadalafil) on diastolic function, biochemical and hemodynamic parameters in patients with RHTN. Acute study with sildenafil treatment found that inhibition of PDE-5 improved hemodynamic parameters and diastolic relaxation. In addition, short-term study with the use of tadalafil demonstrated improvement of LVDD, cGMP and BNP-32 levels, regardless of BP reduction. No endothelial function changes were observed in the studies. The findings of acute and short-term studies revealed potential therapeutic effects of IPDE-5 drugs on LVDD in RHTN patients.A Hipertensão arterial resistente (HAR) é uma doença multifatorial caracterizada por níveis pressóricos acima das metas (140/90 mmHg), a despeito de tratamento farmacológico otimizado de 3 ou mais fármacos anti-hipertensivos de diferentes classes. Pacientes diagnosticados como hipertensos resistentes apresentam alta prevalência de disfunção diastólica do ventrículo esquerdo (DDVE) que proporciona risco aumentado para insuficiência cardíaca. Esta revisão reúne dados de estudos prévios avaliando os efeitos dos inibidores de fosfodiesterase-5 (PDE-5) (administração aguda de sildenafil e de curto prazo de tadalafil) na função diastólica e nos parâmetros bioquímicos e hemodinâmicos em pacientes com HAR. O estudo agudo com sildenafil demonstrou que a inibição da PDE-5 melhorou os parâmetros hemodinâmicos e de relaxamento diastólico. Além disso, o estudo curto prazo com o uso de tadalafil revelou melhora da DDVE e dos níveis de GMPc e BNP-32, independente de redução de pressão arterial. A função endotelial não apresentou alteração com ambos os tratamentos. Os resultados dos estudos agudo e de curto prazo sugerem efeitos terapêuticos potenciais dos fármacos inibidores da PDE-5 na disfunção diastólica em pacientes com HAR.
Related JoVE Video
Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection.
Arch. Virol.
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Human bocavirus (HBoV) is a new parvovirus associated with acute respiratory tract infection (ARTI). In order to evaluate HBoV significance as an agent of acute respiratory disease, we screened 1,135 respiratory samples from children and adults with and without symptoms during two complete calendar years. HBoV1 prevalence in patients with ARTI was 6.33 % in 2011 and 11.64 % in 2012, including neonatal and adult patients. HBoV1 was also detected in 3.77 % of asymptomatic individuals. The co-detection rate was 78.1 %. Among children, 87 % were clinically diagnosed with lower respiratory infection (no significant differences between patients with and without coinfection), and 31 % exhibited comorbidities. Pediatric patients with comorbidities were significantly older than patients without comorbidities. Patients with ARTI had either high or low viral load, while controls had only low viral load, but there were no clinical differences between patients with high or low viral load. In conclusion, we present evidence of the pathogenic potential of HBoV1 in young children with ARTI. Since patients with HBoV1-single infection are not significantly different from those with coinfection with respect to clinical features, the virus can be as pathogenic by itself as other respiratory agents are. Furthermore, an association between high HBoV1 load and disease could not be demonstrated in this study, but all asymptomatic individuals had low viral loads. Also, children with comorbidities are susceptible to HBoV1 infection at older ages than previously healthy children. Thus, the clinical presentation of infection may occur depending on both viral load and the particular interaction between the HBoV1 and the host.
Related JoVE Video
Differential neuroprotective effects of 5'-deoxy-5'-methylthioadenosine.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo.
Related JoVE Video
Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis.
J Biophotonics
PUBLISHED: 06-23-2013
Show Abstract
Hide Abstract
Retinal tissue is damaged during inflammation in Multiple Sclerosis. We assessed molecular changes in inflamed murine retinal cultures by Raman spectroscopy. Partial Least Squares-Discriminant analysis (PLS-DA) was able to classify retina cultures as inflamed with high accuracy. Using Multivariate Curve Resolution (MCR) analysis, we deconvolved 6 molecular components suffering dynamic changes along inflammatory process. Those include the increase of immune mediators (Lipoxygenase, iNOS and TNF?), changes in molecules involved in energy production (Cytochrome C, phenylalanine and NADH/NAD+) and decrease of Phosphatidylcholine. Raman spectroscopy combined with multivariate analysis allows monitoring the evolution of retina inflammation. Raman spectroscopy analysis of the Retinal Ganglion Cell layer of the retina. (A) Design of the analysis of the Ganglion cell layer (GCL) and Retinal Nerve Fiber Layer (RNFL) of the retina based in the physical properties of laser light and anatomical structure of retinal layers. (B) Examples of raw Raman spectra from representative retina sample after 10 hours incubation time (black) and LPS treated retina sample after 10 hours incubation time (red) and 12 hours incubation time (blue). (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Related JoVE Video
Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions.
Cell Host Microbe
PUBLISHED: 06-21-2013
Show Abstract
Hide Abstract
Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl(-)) efflux through the CFTR Cl(-) channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 overexpression. These barrier-disrupting effects of CtxA may act in parallel with Cl(-) secretion to drive the pathophysiology of cholera.
Related JoVE Video
Dynamic cross-regulation of antigen-specific effector and regulatory T cell subpopulations and microglia in brain autoimmunity.
BMC Syst Biol
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Multiple Sclerosis (MS) is considered a T-cell-mediated autoimmune disease with a prototypical oscillatory behavior, as evidenced by the presence of clinical relapses. Understanding the dynamics of immune cells governing the course of MS, therefore, has many implications for immunotherapy. Here, we used flow cytometry to analyze the time-dependent behavior of antigen-specific effector (T(eff)) and regulatory (T(reg)) T cells and microglia in mice model of MS, Experimental Autoimmune Encephalomyelitis (EAE), and compared the observations with a mathematical cross-regulation model of T-cell dynamics in autoimmune disease.
Related JoVE Video
Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants.
Nucleic Acids Res.
PUBLISHED: 03-12-2013
Show Abstract
Hide Abstract
Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5-3 exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways.
Related JoVE Video
Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance.
New Phytol.
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.
Related JoVE Video
Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation.
PLoS ONE
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage.
Related JoVE Video
Systemic inflammation induces axon injury during brain inflammation.
Ann. Neurol.
PUBLISHED: 12-23-2011
Show Abstract
Hide Abstract
Axon injury is a key contributor to the progression of disability in multiple sclerosis (MS). Systemic infections, which frequently precede relapses in MS, have been linked to clinical progression in Alzheimers disease. There is evidence of a role for the innate immune system in MS lesions, as axonal injury is associated with macrophage activation. We hypothesize that systemic inflammation leads to enhanced axonal damage in MS as a consequence of innate immune system activation.
Related JoVE Video
[Knowledge of gender-based violence in the population seen in primary care].
Aten Primaria
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
To determine the knowledge and attitudes towards gender-based violence in the Primary Care patient population and their relationship with sociodemographic factors and personal experience.
Related JoVE Video
Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus.
Mol Plant
PUBLISHED: 07-05-2010
Show Abstract
Hide Abstract
The complex responses of eukaryotic cells to external factors are governed by several transcriptional and post-transcriptional processes. Several of them occur in the nucleus and have been linked to the action of non-protein-coding RNAs (or npcRNAs), both long and small npcRNAs, that recently emerged as major regulators of gene expression. Regulatory npcRNAs acting in the nucleus include silencing-related RNAs, intergenic npcRNAs, natural antisense RNAs, and other aberrant RNAs resulting from the interplay between global transcription and RNA processing activities (such as Dicers and RNA-dependent polymerases). Generally, the resulting npcRNAs exert their regulatory effects through interactions with RNA-binding proteins (or RBPs) within ribonucleoprotein particles (or RNPs). A large group of RBPs are implicated in the silencing machinery through small interfering RNAs (siRNAs) and their localization suggests that several act in the nucleus to trigger epigenetic and chromatin changes at a whole-genome scale. Other nuclear RBPs interact with npcRNAs and change their localization. In the fission yeast, the RNA-binding Mei2p protein, playing pivotal roles in meiosis, interact with a meiotic npcRNA involved in its nuclear re-localization. Related processes have been identified in plants and the ENOD40 npcRNA was shown to re-localize a nuclear-speckle RBP from the nucleus to the cytoplasm in Medicago truncatula. Plant RBPs have been also implicated in RNA-mediated chromatin silencing in the FLC locus through interaction with specific antisense transcripts. In this review, we discuss the interactions between RBPs and npcRNAs in the context of nuclear-related processes and their implication in plant development and stress responses. We propose that these interactions may add a regulatory layer that modulates the interactions between the nuclear genome and the environment and, consequently, control plant developmental plasticity.
Related JoVE Video
Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst.
Nature
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
Bacillus anthracis is the causative agent of anthrax in humans and other mammals. In lethal systemic anthrax, proliferating bacilli secrete large quantities of the toxins lethal factor (LF) and oedema factor (EF), leading to widespread vascular leakage and shock. Whereas host targets of LF (mitogen-activated protein-kinase kinases) and EF (cAMP-dependent processes) have been implicated in the initial phase of anthrax, less is understood about toxin action during the final stage of infection. Here we use Drosophila melanogaster to identify the Rab11/Sec15 exocyst, which acts at the last step of endocytic recycling, as a novel target of both EF and LF. EF reduces levels of apically localized Rab11 and indirectly blocks vesicle formation by its binding partner and effector Sec15 (Sec15-GFP), whereas LF acts more directly to reduce Sec15-GFP vesicles. Convergent effects of EF and LF on Rab11/Sec15 inhibit expression of and signalling by the Notch ligand Delta and reduce DE-cadherin levels at adherens junctions. In human endothelial cells, the two toxins act in a conserved fashion to block formation of Sec15 vesicles, inhibit Notch signalling, and reduce cadherin expression at adherens junctions. This coordinated disruption of the Rab11/Sec15 exocyst by anthrax toxins may contribute to toxin-dependent barrier disruption and vascular dysfunction during B. anthracis infection.
Related JoVE Video
End-of-life communication in the intensive care unit.
Gen Hosp Psychiatry
PUBLISHED: 03-09-2010
Show Abstract
Hide Abstract
Because one in five Americans die in the intensive care unit (ICU), the potential role of palliative care is considerable. End-of-life (EOL) communication is essential for the implementation of ICU palliative care. The objective of this review was to summarize current research and recommendations for ICU EOL communication.
Related JoVE Video
Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes.
Environ Sci Pollut Res Int
PUBLISHED: 09-30-2009
Show Abstract
Hide Abstract
In this work, the potential for using olive-mill solid waste as an organic amendment for biochemical and biological restoration of a trichloroethylene-contaminated soil, which has previously been stabilized through vermicomposting processes, has been explored.
Related JoVE Video
Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris.
Protein Expr. Purif.
PUBLISHED: 08-28-2009
Show Abstract
Hide Abstract
The mould Aspergillus giganteus produces a basic, low molecular weight protein (AFP) showing in vitro and in vivo antifungal properties against important plant pathogens. AFP is secreted as an inactive precursor containing an amino-terminal extension of six amino acids (lf-AFP) which is later removed to produce the active protein. The molecular basis to explain this behavior and the features that determine the fungal specificity of this protein are not completely solved. In this work, the mature AFP (AFP *) and a version of AFP with an extended amino-terminal (proAFP) have been cloned and produced in the yeast Pichia pastoris. The two proteins have been purified to homogeneity and characterized from structural and functional points of view. Recombinant AFP * produced is practically indistinguishable from the natural fungal protein in terms of its spectroscopic and antifungal properties while proAFP is mostly inactive under identical assay conditions. The availability of an active AFP protein produced in P. pastoris will permit investigation of the mode of action and targeting specificity of AFP by using site-directed mutagenesis approaches.
Related JoVE Video
Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils.
J. Hazard. Mater.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
The aim of the present study was to explore the potential for using vermicompost from olive-mill waste as an organic amendment for enhanced bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. The focus was to analyse the genetic potential and the naphthalene dioxygenase (NDO) expression of the bacterial communities involved in the degradation of naphthalene, as chemical model for the degradation of PAH. The structure of the metabolically active bacterial population was evidenced in the RNA-based denaturing gradient gel electrophoresis (DGGE) profiles. The relative expression of NDO was determined with real-time PCR in both the soil and the vermicompost cDNA. Naphthalene changed the structure of the metabolically active bacterial community in the vermicompost when this was artificially contaminated. When used as amendment, naphthalene-free vermicompost modified the bacterial population in the PAH-contaminated soil, evidenced in the DGGE gels after 1 month of incubation. In the amended soil, the vermicompost enhanced the NDO enzyme expression with a concomitant biodegradation of naphthalene. The effect of the vermicompost was to induce the expression of biodegradation indicator genes in the autochthonous bacterial community and/or incorporate new bacterial species capable of degrading PAH. The results indicated that vermicompost from olive-mill wastes could be considered a suitable technology to be used in PAH bioremediation.
Related JoVE Video
Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398.
FEBS Lett.
PUBLISHED: 02-15-2009
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) are small RNAs acting as regulators of eukaryotic gene expression at the post-transcriptional level. Plant miRNAs have been implicated in developmental processes and adaptation to the environment. We show that the accumulation of four Arabidopsis miRNAs (miR171, miR398, miR168 and miR167) oscillates during the diurnal cycle, their accumulation increasing during the light period of the daytime and decreasing in darkness. This oscillatory pattern of miRNA accumulation is not governed by the circadian clock. These results suggest a potential role of light in controlling miRNA accumulation while defining a new level of regulation of miRNA gene expression in Arabidopsis.
Related JoVE Video
Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects.
Haematologica
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
The endothelial protein C receptor plays an important role within the protein C pathway in regulating coagulation and inflammation. Recently, we described that endothelial protein C receptor can be released in vitro in microparticulate form from primary endothelial cells by exogenous activated protein C. Activated protein C bound to this endothelial protein C receptor retains anticoagulant activity and we hypothesize that this microparticulate endothelial protein C receptor-activated protein C complex can also cleave endothelial protease-activated receptor 1 to modulate inflammation and increase cell survival. Our main objective was, therefore, to study the effect that microparticle-associated endothelial protein C receptor-activated protein C has on endothelial function.
Related JoVE Video
Solvent tolerance acquired by Brevibacillus brevis during an olive-waste vermicomposting process.
Ecotoxicol. Environ. Saf.
PUBLISHED: 02-05-2009
Show Abstract
Hide Abstract
In this work, a cultivable, Gram-positive, solvent-resistant bacterium was isolated from vermicomposted olive wastes (VOW). The highest 16S rRNA sequence similarity (99%) was found in Brevibacillus brevis. The genome of the isolate, selected for trichloroethylene (TCE)-tolerance, contained a nucleotide sequence encoding a conserved protein domain (ACR_tran) ascribable to the HAE1-RND family. Members of this family are hydrophobic/amphiphilic efflux pumps largely restricted to Gram-negative bacteria. No DNA sequences of HAE1 transporters were detected in the genome of a reference B. brevis strain isolated from natural soil. Since no cultivable solvent-tolerant bacterium was detected in the unvermicomposted olive waste, a transfer of solvent-resistance genes from Gram-negative bacteria during the vermicomposting process could explain the presence of HAE1 transporters in B. brevis isolated from the vermicompost. Under TCE stress conditions, the acquired nucleotide sequence could be translated into proteins, and the tolerance to solvents is conferred to the bacterium. The isolate was designated as strain BEA1 (EF079071).
Related JoVE Video
Passive experimental autoimmune encephalomyelitis in C57BL/6 with MOG: evidence of involvement of B cells.
PLoS ONE
Show Abstract
Hide Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described. The aim of this study was to characterize the neuroinflammatory and neurodegenerative responses of at-EAE in C57BL/6 mice by histological techniques and compare them with that observed in the active EAE model. To develop the at-EAE, splenocytes from active EAE female mice were harvested and cultured in presence of MOG(35-55) and IL-12, and then injected intraperitoneally in recipient female C57BL6/J mice. In both models, the development of EAE was similar except for starting before the onset of symptoms and presenting a higher EAE cumulative score in the at-EAE model. Spinal cord histological examination revealed an increased glial activation as well as more extensive demyelinating areas in the at-EAE than in the active EAE model. Although inflammatory infiltrates composed by macrophages and T lymphocytes were found in the spinal cord and brain of both models, B lymphocytes were significantly increased in the at-EAE model. The co-localization of these B cells with IgG and their predominant distribution in areas of demyelination would suggest that IgG-secreting B cells are involved in the neurodegenerative processes associated with at-EAE.
Related JoVE Video
Influence of surface groups on poly(propylene imine) dendrimers antiprion activity.
Biomacromolecules
Show Abstract
Hide Abstract
Prion diseases are characterized by the accumulation of PrP(Sc), an aberrantly folded isoform of the host protein PrP(C). Specific forms of synthetic molecules known as dendrimers are able to eliminate protease-resistant PrP(Sc) in both an intracellular and in vitro setting. The properties of a dendrimer which govern this ability are unknown. We addressed the issue by comparing the in vitro antiprion ability of numerous modified poly(propylene-imine) dendrimers, which varied in size, structure, charge, and surface group composition. Several of the modified dendrimers, including an anionic glycodendrimer, reduced the level of protease resistant PrP(Sc) in a prion strain-dependent manner. This led to the formulation of a new working model for dendrimer/prion interactions which proposes dendrimers eliminate PrP(Sc) by destabilizing the protein and rendering it susceptible to proteolysis. This ability is not dependent on any particular charge of dendrimer, but does require a high density of reactive surface groups.
Related JoVE Video
Bacterial ?-glucosidase function and metabolic activity depend on soil management in semiarid rainfed agriculture.
Ecol Evol
Show Abstract
Hide Abstract
Genomic and transcriptomic approaches were used to gain insights into the relationship between soil management and bacterial-mediated functions in an olive orchard agroecosystem. Four management practices were assessed in a 30-year trial in a semiarid Mediterranean region. Transcriptional activity of bacterial 16S rRNA genes increased in noncovered soils, indicating higher microbial maintenance requirements to thrive in less favorable environmental conditions. The 16S rRNA transcript:gene copy ratio confirmed this assumption and pointed toward a much higher constitutive expression from rRNA operons in noncovered soils and to even higher expression levels when spontaneous vegetation was removed chemically. As described for 16S rRNA, potential transcription did not reveal the real transcription of bacterial ?-glucosidase genes, and higher gene expression in noncovered soils plus herbicides was evidenced. Since no relationship between total or soluble organic carbon and bacterial ?-glucosidase transcription was found, the above hypothesis could indicate either that soluble organic carbon is not the main pool of enzyme-inducing substrates or that constitutive production of bacterial ?-glucosidase enzymes increases as soil conditions worsen.
Related JoVE Video
Treatment of malignant, non-resectable, epithelial origin esophageal tumours with the humanized anti-epidermal growth factor antibody nimotuzumab combined with radiation therapy and chemotherapy.
Cancer Biol. Ther.
Show Abstract
Hide Abstract
Over-expression of epidermal growth factor receptor in esophageal cancer is associated with poor prognosis. The present study was conducted to evaluate safety and preliminary efficacy of nimotuzumab, a humanized anti-EGFR antibody in combination with radiation and chemotherapy in advanced esophageal tumours. Patients and
Related JoVE Video
Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis.
EMBO J.
Show Abstract
Hide Abstract
Formation of trans-acting small interfering RNAs (ta-siRNAs) from the TAS3 precursor is triggered by the AGO7/miR390 complex, which primes TAS3 for conversion into double-stranded RNA by the RNA-dependent RNA polymerase RDR6 and SGS3. These ta-siRNAs control several aspects of plant development. The mechanism routing AGO7-cleaved TAS3 precursor to RDR6/SGS3 and its subcellular organization are unknown. We show that AGO7 accumulates together with SGS3 and RDR6 in cytoplasmic siRNA bodies that are distinct from P-bodies. siRNA bodies colocalize with a membrane-associated viral protein and become positive for stress-granule markers upon stress-induced translational repression, this suggests that siRNA bodies are membrane-associated sites of accumulation of mRNA stalled during translation. AGO7 congregates with miR390 and SGS3 in membranes and its targeting to the nucleus prevents its accumulation in siRNA bodies and ta-siRNA formation. AGO7 is therefore required in the cytoplasm and membranous siRNA bodies for TAS3 processing, revealing a hitherto unknown role for membrane-associated ribonucleoparticles in ta-siRNA biogenesis and AGO action in plants.
Related JoVE Video
[Guidelines on the appropriate use of animal models for developing therapies in multiple sclerosis].
Rev Neurol
Show Abstract
Hide Abstract
The advance in the achievement of effective therapies for multiple sclerosis (MS), the definition of appropriate therapeutic windows and to establish better diagnostic and prognostic biomarkers have become a challenging task for both researchers and clinicians. Some pitfalls in clinical trials might be related to lack of adequacy of the preclinical studies in MS experimental animal models.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.