JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Comparative Network Analysis of Preterm vs. Full-Term Infant-Mother Interactions.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Several studies have reported that interactions of mothers with preterm infants show differential characteristics compared to that of mothers with full-term infants. Interaction of preterm dyads is often reported as less harmonious. However, observations and explanations concerning the underlying mechanisms are inconsistent. In this work 30 preterm and 42 full-term mother-infant dyads were observed at one year of age. Free play interactions were videotaped and coded using a micro-analytic coding system. The video records were coded at one second resolution and studied by a novel approach using network analysis tools. The advantage of our approach is that it reveals the patterns of behavioral transitions in the interactions. We found that the most frequent behavioral transitions are the same in the two groups. However, we have identified several high and lower frequency transitions which occur significantly more often in the preterm or full-term group. Our analysis also suggests that the variability of behavioral transitions is significantly higher in the preterm group. This higher variability is mostly resulted from the diversity of transitions involving non-harmonious behaviors. We have identified a maladaptive pattern in the maternal behavior in the preterm group, involving intrusiveness and disengagement. Application of the approach reported in this paper to longitudinal data could elucidate whether these maladaptive maternal behavioral changes place the infant at risk for later emotional, cognitive and behavioral disturbance.
Related JoVE Video
Modeling the NF-?B mediated inflammatory response predicts cytokine waves in tissue.
BMC Syst Biol
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
Waves propagating in "excitable media" is a reliable way to transmit signals in space. A fascinating example where living cells comprise such a medium is Dictyostelium D. which propagates waves of chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them.
Related JoVE Video
Modeling oscillatory control in NF-?B, p53 and Wnt signaling.
Curr. Opin. Genet. Dev.
PUBLISHED: 06-25-2010
Show Abstract
Hide Abstract
Oscillations are commonly observed in cellular behavior and span a wide range of timescales, from seconds in calcium signaling to 24 hours in circadian rhythms. In between lie oscillations with time periods of 1-5 hours seen in NF-?B, p53 and Wnt signaling, which play key roles in the immune system, cell growth/death and embryo development, respectively. In the first part of this article, we provide a brief overview of simple deterministic models of oscillations. In particular, we explain the mechanism of saturated degradation that has been used to model oscillations in the NF-?B, p53 and Wnt systems. The second part deals with the potential physiological role of oscillations. We use the simple models described earlier to explore whether oscillatory signals can encode more information than steady-state signals. We then discuss a few simple genetic circuits that could decode information stored in the average, amplitude or frequency of oscillations. The presence of frequency-detector circuit downstream of NF-?B or p53 would be a strong clue that oscillations are important for the physiological response of these signaling systems.
Related JoVE Video
Kinetic enhancement of NF-kappaBxDNA dissociation by IkappaBalpha.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-03-2009
Show Abstract
Hide Abstract
A hallmark of the NF-kappaB transcription response to inflammatory cytokines is the remarkably rapid rate of robust activation and subsequent signal repression. Although the rapidity of postinduction repression is explained partly by the fact that the gene for IkappaBalpha is strongly induced by NF-kappaB, the newly synthesized IkappaBalpha still must enter the nucleus and compete for binding to NF-kappaB with the very large number of kappaB sites in the DNA. We present results from real-time binding kinetic experiments, demonstrating that IkappaBalpha increases the dissociation rate of NF-kappaB from the DNA in a highly efficient kinetic process. Analysis of various IkappaB mutant proteins shows that this process requires the C-terminal PEST sequence and the weakly folded fifth and sixth ankyrin repeats of IkappaBalpha. Mutational stabilization of these repeats reduces the efficiency with which IkappaBalpha enhances the dissociation rate.
Related JoVE Video
Limit-cycle oscillations and stable patterns in repressor lattices.
Phys Rev E Stat Nonlin Soft Matter Phys
Show Abstract
Hide Abstract
As a model for cell-to-cell communication in biological tissues, we construct repressor lattices by repeating a regulatory three-node motif on a hexagonal structure. Local interactions can be unidirectional, where a node either represses or activates a neighbor that does not communicate backwards. Alternatively, they can be bidirectional where two neighboring nodes communicate with each other. In the unidirectional case, we perform stability analyses for the transitions from stationary to oscillating states in lattices with different regulatory units. In the bidirectional case, we investigate transitions from oscillating states to ordered patterns generated by local switches. Finally, we show how such stable patterns in two-dimensional lattices can be generalized to three-dimensional systems.
Related JoVE Video
Effects of growth and mutation on pattern formation in tissues.
PLoS ONE
Show Abstract
Hide Abstract
In many developing tissues, neighboring cells enter different developmental pathways, resulting in a fine-grained pattern of different cell states. The most common mechanism that generates such patterns is lateral inhibition, for example through Delta-Notch coupling. In this work, we simulate growth of tissues consisting of a hexagonal arrangement of cells laterally inhibiting their neighbors. We find that tissue growth by cell division and cell migration tends to produce ordered patterns, whereas lateral growth leads to disordered, patchy patterns. Ordered patterns are very robust to mutations (gene silencing or activation) in single cells. In contrast, mutation in a cell of a disordered tissue can produce a larger and more widespread perturbation of the pattern. In tissues where ordered and disordered patches coexist, the perturbations spread mostly at boundaries between patches. If cell division occurs on time scales faster than the degradation time, disordered patches will appear. Our work suggests that careful experimental characterization of the disorder in tissues could pinpoint where and how the tissue is susceptible to large-scale damage even from single cell mutations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.