JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
SPAK-Sensitive Regulation of Glucose Transporter SGLT1.
J. Membr. Biol.
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK is a powerful regulator of ion transport. The study explored whether SPAK similarly regulates nutrient transporters, such as the Na(+)-coupled glucose transporter SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active (T233E)SPAK, WNK-insensitive (T233A)SPAK or catalytically inactive (D212A)SPAK, and electrogenic glucose transport determined by dual-electrode voltage-clamp experiments. Moreover, Ussing chamber was employed to determine the electrogenic glucose transport in intestine from wild-type mice (spak (wt/wt)) and from gene-targeted mice carrying WNK-insensitive SPAK (spak (tg/tg)). In SGLT1-expressing oocytes, but not in water-injected oocytes, the glucose-dependent current (I g) was significantly decreased following coexpression of wild-type SPAK and (T233E)SPAK, but not by coexpression of (T233A)SPAK or (D212A)SPAK. Kinetic analysis revealed that SPAK decreased maximal I g without significantly modifying the glucose concentration required for halfmaximal I g (K m). According to the chemiluminescence experiments, wild-type SPAK but not (D212A)SPAK decreased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 ?M) resulted in a decline of I g, which was similar in the absence and presence of SPAK, suggesting that SPAK did not accelerate the retrieval of SGLT1 protein from the cell membrane but rather down-regulated carrier insertion into the cell membrane. Intestinal electrogenic glucose transport was significantly lower in spak (wt/wt) than in spak (tg/tg) mice. In conclusion, SPAK is a powerful negative regulator of SGLT1 protein abundance in the cell membrane and thus of electrogenic glucose transport.
Related JoVE Video
SPAK and OSR1 Sensitivity of Voltage-Gated K(+) Channel Kv1.5.
J. Membr. Biol.
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1) are potent regulators of several transporters and ion channels. The kinases are under regulation of with-no-K(Lys) (WNK) kinases. The present study explored whether SPAK and/or OSR1 modify the expression and/or activity of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1, and catalytically inactive (D164A)OSR1. Voltage-gated K(+) channel activity was quantified utilizing dual electrode voltage clamp and Kv1.5 channel protein abundance in the cell membrane utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type SPAK and (T233E)SPAK, but not by (T233A)SPAK and (D212A)SPAK. Similarly, Kv1.5 activity and Kv1.5-HA protein abundance were significantly down-regulated by wild-type OSR1 and (T185E)OSR1, but not by (T185A)OSR1 and (D164A)OSR1. Both, SPAK and OSR1 decrease cell membrane Kv1.5 protein abundance and activity.
Related JoVE Video
SPAK Dependent Regulation of Peptide Transporters PEPT1 and PEPT2.
Kidney Blood Press. Res.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
SPAK (STE20-related proline/alanine-rich kinase) is a powerful regulator of renal tubular ion transport and blood pressure. Moreover, SPAK contributes to the regulation of cell volume. Little is known, however, about a role of SPAK in the regulation or organic solutes. The present study thus addressed the influence of SPAK on the peptide transporters PEPT1 and PEPT2.
Related JoVE Video
Regulation of ClC-2 Activity by SPAK and OSR1.
Kidney Blood Press. Res.
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are powerful regulators of diverse transport processes. Both kinases are activated by cell shrinkage and participate in stimulation of regulatory cell volume increase (RVI). Execution of RVI involves inhibition of Cl(-) channels. The present study explored whether SPAK and/or OSR1 regulate the activity of the Cl(-) channel ClC-2.
Related JoVE Video
SPAK and OSR1 Dependent Down-Regulation of Murine Renal Outer Medullary K Channel ROMK1.
Kidney Blood Press. Res.
PUBLISHED: 07-17-2014
Show Abstract
Hide Abstract
The kinases SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) participate in the regulation of the NaCl cotransporter NCC and the Na(+),K(+),2Cl(-) cotransporter NKCC2. The kinases are regulated by WNK (with-no-K[Lys]) kinases. Mutations of genes encoding WNK kinases underly Gordon's syndrome, a monogenic disease leading to hypertension and hyperkalemia. WNK kinases further regulate the renal outer medullary K(+) channel ROMK1. The present study explored, whether SPAK and/or OSR1 have similarly the potential to modify the activity of ROMK1.
Related JoVE Video
Down-regulation of K? channels by human parvovirus B19 capsid protein VP1.
Biochem. Biophys. Res. Commun.
PUBLISHED: 06-24-2014
Show Abstract
Hide Abstract
Parvovirus B19 (B19V) can cause inflammatory cardiomyopathy and endothelial dysfunction. Pathophysiological mechanisms involved include lysophosphatidylcholine producing phospholipase A2 (PLA2) activity of the B19V capsid protein VP1. Most recently, VP1 and lysophosphatidylcholine have been shown to inhibit Na(+)/K(+) ATPase. The present study explored whether VP1 modifies the activity of Kv1.3 and Kv1.5 K(+) channels. cRNA encoding Kv1.3 or Kv1.5 was injected into Xenopus oocytes without or with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-induced myocarditis. K(+) channel activity was determined by dual electrode voltage clamp. Injection of cRNA encoding Kv1.3 or Kv1.5 into Xenopus oocytes was followed by appearance of Kv K(+) channel activity, which was significantly decreased by additional injection of cRNA encoding VP1, but not by additional injection of cRNA encoding PLA2-negative VP1 mutant (H153A). The effect of VP1 on Kv current was not significantly modified by transcription inhibitor actinomycin (10 ?M for 36 h) but was mimicked by lysophosphatidylcholine (1 ?g/ml). The B19V capsid protein VP1 inhibits host cell Kv channels, an effect at least partially due to phospholipase A2 (PLA) dependent formation of lysophosphatidylcholine.
Related JoVE Video
Checkpoint kinase Chk2 controls renal Cyp27b1 expression, calcitriol formation, and calcium-phosphate metabolism.
Pflugers Arch.
PUBLISHED: 06-06-2014
Show Abstract
Hide Abstract
Checkpoint kinase 2 (Chk2) is the main effector kinase of ataxia telangiectasia mutated (ATM) and responsible for cell cycle regulation. ATM signaling has been shown to upregulate interferon-regulating factor-1 (IRF-1), a transcription factor also expressed in the kidney. Calcitriol (1,25 (OH)2D3), a major regulator of mineral metabolism, is generated by 25-hydroxyvitamin D 1?-hydroxylase in the kidney. Since 25-hydroxyvitamin D 1?-hydroxylase expression is enhanced by IRF-1, the present study explored the role of Chk2 for calcitriol formation and mineral metabolism. Chk2-deficient mice (chk2 (-/-)) were compared to wild-type mice (chk2 (+/+)). Transcript levels of renal 25-hydroxyvitamin D 1?-hydroxylase, Chk2, and IRF-1 were determined by RT-PCR; Klotho expression by Western blotting; bone density by ?CT analysis; serum or plasma 1,25 (OH)2D3, PTH, and C-terminal FGF23 concentrations by immunoassays; and serum, fecal, and urinary calcium and phosphate concentrations by photometry. The renal expression of IRF-1 and 25-hydroxyvitamin D 1?-hydroxylase as well as serum 1,25 (OH)2D3 and FGF23 levels were significantly lower in chk2 (-/-) mice compared to chk2 (+/+) mice. Plasma PTH was not different between the genotypes. Renal calcium and phosphate excretion were significantly higher in chk2 (-/-) mice than in chk2 (+/+) mice despite hypophosphatemia and normocalcemia. Bone density was not different between the genotypes. We conclude that Chk2 regulates renal 25-hydroxyvitamin D 1?-hydroxylase expression thereby impacting on calcium and phosphate metabolism.
Related JoVE Video
Upregulation of excitatory amino acid transporters by coexpression of Janus kinase 3.
J. Membr. Biol.
PUBLISHED: 04-03-2014
Show Abstract
Hide Abstract
Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3(A572V) is found in acute megakaryoplastic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3(K855A). Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1-4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in Xenopus oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3(A568V) or inactive JAK3(K851A), and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (jak3(-/-)) and from corresponding wild-type mice (jak3(+/+)). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (Ig), which was significantly increased following coexpression of JAK3. Ig in oocytes expressing EAAT3 was further increased by JAK3(A568V) but not by JAK3(K851A). Ig in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 µM). Kinetic analysis revealed that JAK3 increased maximal Ig and significantly reduced the glutamate concentration required for half maximal Ig (Km). Intestinal electrogenic glutamate transport was significantly lower in jak3(-/-) than in jak3(+/+) mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.
Related JoVE Video
PKB/SGK-resistant GSK-3 signaling following unilateral ureteral obstruction.
Kidney Blood Press. Res.
PUBLISHED: 03-15-2014
Show Abstract
Hide Abstract
Renal tissue fibrosis contributes to the development of end-stage renal disease. Causes for renal tissue fibrosis include obstructive nephropathy. The development of renal fibrosis following unilateral ureteral obstruction (UUO) is blunted in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase SGK1. Similar to Akt isoforms, SGK1 phosphorylates and thus inactivates glycogen synthase kinase GSK-3. The present study explored whether PKB/SGK-dependent phoshorylation of GSK-3?/? impacts on pro-fibrotic signaling following UUO.
Related JoVE Video
Downregulation of chloride channel ClC-2 by Janus kinase 3.
J. Membr. Biol.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Janus kinase-3 (JAK3) fosters proliferation and counteracts apoptosis of lymphocytes and tumor cells. The gain of function mutation (A572V)JAK3 has been discovered in acute megakaryoplastic leukemia. JAK3 is inactivated by replacement of lysine by alanine in the catalytic subunit ((K855A)JAK3). Regulation of cell proliferation and apoptosis involves altered activity of Cl(-) channels. The present study, thus, explored whether JAK3 modifies the function of the small conductance Cl(-) channel ClC-2. To this end, ClC-2 was expressed in Xenopus oocytes with or without wild-type JAK3, (A568V)JAK3 or (K851A)JAK3, and the Cl(-) channel activity determined by dual-electrode voltage clamp. Channel protein abundance in the cell membrane was determined utilizing chemiluminescence. As a result, expression of ClC-2 was followed by a marked increase of cell membrane conductance. The conductance was significantly decreased following coexpression of JAK3 or (A568V)JAK3, but not by coexpression of (K851A)JAK3. Exposure of the oocytes expressing ClC-2 together with (A568V)JAK3 to the JAK3 inhibitor WHI-P154 (4-[(3'-bromo-4'-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline, 22 ?M) increased the conductance. Coexpression of (A568V)JAK3 decreased the ClC-2 protein abundance in the cell membrane of ClC-2 expressing oocytes. The decline of conductance in ClC-2 and (A568V)JAK3 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 ?M) was similar in oocytes expressing ClC-2 with (A568V)JAK3 and oocytes expressing ClC-2 alone, indicating that (A568V)JAK3 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. In conclusion, JAK3 downregulates ClC-2 activity and thus counteracts Cl(-) exit-an effect possibly influencing cell proliferation and apoptosis.
Related JoVE Video
Upregulation of KCNQ1/KCNE1 K(+) channels by Klotho.
Channels (Austin)
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as ?-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K(+) channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a ?-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the ?-glucuronidase activity of Klotho protein.
Related JoVE Video
Up-regulation of Kir2.1 (KCNJ2) by the serum & glucocorticoid inducible SGK3.
Cell. Physiol. Biochem.
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
The serum & glucocorticoid inducible kinase SGK3, an ubiquitously expressed serine/threonine kinase, regulates a variety of ion channels. It has previously been shown that SGK3 upregulates the outwardly rectifying K(+) channel KV11.1, which is expressed in cardiomyocytes. Cardiomyocytes further express the inward rectifier K(+) channel K(ir)2.1, which contributes to maintenance of resting cell membrane potential. Loss-of-function mutations of KCNJ2 encoding K(ir)2.1 result in Andersen-Tawil syndrome with periodic paralysis, cardiac arrhythmia and dysmorphic features. The present study explored whether SGK3 participates in the regulation of K(ir)2.1.
Related JoVE Video
Up-regulation of Na(+)-coupled glucose transporter SGLT1 by caveolin-1.
Biochim. Biophys. Acta
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
The Na(+)-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5?M) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane.
Related JoVE Video
Down-regulation of Na/K+ atpase activity by human parvovirus B19 capsid protein VP1.
Cell. Physiol. Biochem.
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Human parvovirus B19 (B19V) may cause inflammatory cardiomyopathy (iCMP) which is accompanied by endothelial dysfunction. The B19V capsid protein VP1 contains a lysophosphatidylcholine producing phospholipase A2 (PLA) sequence. Lysophosphatidylcholine has in turn been shown to inhibit Na(+)/K(+) ATPase. The present study explored whether VP1 modifies Na(+)/K(+) ATPase activity.
Related JoVE Video
AMP-activated protein kinase regulates hERG potassium channel.
Pflugers Arch.
PUBLISHED: 04-18-2013
Show Abstract
Hide Abstract
Besides their role in cardiac repolarization, human ether-a-go-go-related gene potassium (hERG) channels are expressed in several tumor cells including rhabdomyosarcoma cells. The channels foster cell proliferation. Ubiquitously expressed AMP-dependent protein kinase (AMPK) is a serine-/threonine kinase, stimulating energy-generating and inhibiting energy-consuming processes thereby helping cells survive periods of energy depletion. AMPK has previously been shown to regulate Na?/K? ATPase, Na?/Ca²? exchangers, Ca²? channels and K? channels. The present study tested whether AMPK regulates hERG channel activity. Wild type AMPK (?1?1?1), constitutively active (?R70Q)AMPK (?1?1?1(R70Q)), or catalytically inactive (?K45R)AMPK (?1(K45R)?1?1) were expressed in Xenopus oocytes with hERG. Tail currents were determined as a measure of hERG channel activity by two-electrode-voltage clamp. hERG membrane abundance was quantified by chemiluminescence and visualized by immunocytochemistry and confocal microscopy. Moreover, hERG currents were measured in RD rhabdomyosarcoma cells after pharmacological modification of AMPK activity using the patch clamp technique. Coexpression of wild-type AMPK and of constitutively active (?R70Q)AMPK significantly downregulated the tail currents in hERG-expressing Xenopus oocytes. Pharmacological activation of AMPK with AICAR or with phenformin inhibited hERG currents in Xenopus oocytes, an effect abrogated by AMPK inhibitor compound C. (?R70Q)AMPK enhanced the Nedd4-2-dependent downregulation of hERG currents. Coexpression of constitutively active (?R70Q)AMPK decreased membrane expression of hERG in Xenopus oocytes. Compound C significantly enhanced whereas AICAR tended to inhibit hERG currents in RD rhabdomyosarcoma cells. AMPK is a powerful regulator of hERG-mediated currents in both, Xenopus oocytes and RD rhabdomyosarcoma cells. AMPK-dependent regulation of hERG may be particularly relevant in cardiac hypertrophy and tumor growth.
Related JoVE Video
Klotho sensitivity of the hERG channel.
FEBS Lett.
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Klotho, a hormone and enzyme, is a powerful regulator of ageing and life span. Klotho deficiency leads to cardiac arrythmia and sudden cardiac death. We thus explored whether klotho modifies cardiac K(+)-channel hERG. Current was determined utilizing dual electrode voltage clamp and hERG protein abundance utilizing immunohistochemistry and chemiluminescence in Xenopus oocytes expressing hERG with or without klotho. Coexpression of klotho increased cell membrane hERG-protein abundance and hERG current at any given voltage without significantly modifying the voltage required to activate the channel. The effect of klotho coexpression was mimicked by recombinant klotho protein and reversed by ?-glucuronidase-inhibitor D-saccharic acid-1,4-lactone.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.