JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscles fibers.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Muscle-specific ankyrins 1 (sAnk1) are a group of small ankyrin 1 isoforms, of which sAnk1.5 is the most abundant. sAnk1 are localized in the sarcoplasmic reticulum (SR) membrane from where they interact with obscurin, a myofibrillar protein. This interaction appears to contribute to stabilize the SR close to the myofibrils. Here we report the structural and functional characterization of skeletal muscles from sAnk1 knockout mice (KO). Deletion of sAnk1 did not change the expression and localization of SR proteins in 4-6 month old sAnk1 KO mice. Structurally, the main modification observed in skeletal muscles of adult sAnk1 KO mice (4-6 months of age) was the reduction of SR volume at the sarcomere A band level. With increasing age (at 12-15 months) EDL skeletal muscles of sAnk1 KO mice develop prematurely large tubular aggregates, whereas diaphragm undergoes significant structural damage. Parallel functional studies revealed specific changes in the contractile performance of muscles from sAnk1 KO mice and a reduced exercise tolerance in an endurance test on treadmill compared to control mice. Moreover, reduced Q? charge and L-type Ca(2+)current, that are indexes of affected e-c coupling, were observed in diaphragm fibers from 12-15 month old mice, but not in other skeletal muscles from sAnk1 KO mice. Altogether, these findings show that the ablation of sAnk1, by altering the organization of the SR, renders skeletal muscles susceptible to undergo structural and functional alterations more evident with age, and point to an important contribution of sAnk1 to the maintenance of the longitudinal SR architecture.
Related JoVE Video
Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging.
Cell Rep
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins. We report that specific autophagy inhibition in muscle has a major impact on neuromuscular synaptic function and, consequently, on muscle strength, ultimately affecting the lifespan of animals. Inhibition of autophagy also exacerbates aging phenotypes in muscle, such as mitochondrial dysfunction, oxidative stress, and profound weakness. Mitochondrial dysfunction and oxidative stress directly affect acto-myosin interaction and force generation but show a limited effect on stability of neuromuscular synapses. These results demonstrate that age-related deterioration of synaptic structure and function is exacerbated by defective autophagy.
Related JoVE Video
NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models.
Hum. Mol. Genet.
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are inherited muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen (Col) VI. Opening of the cyclosporin A-sensitive mitochondrial permeability transition pore (PTP) is a causative event in disease pathogenesis, and a potential target for therapy. Here, we have tested the effect of N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclophilin inhibitor, in a zebrafish model of ColVI myopathy obtained by deletion of the N-terminal region of the ColVI ?1 triple helical domain, a common mutation of UCMD. Treatment with antisense morpholino sequences targeting col6a1 exon 9 at the 1-4 cell stage (within 1 h post fertilization, hpf) caused severe ultrastructural and motor abnormalities as assessed by electron and fluorescence microscopy, birefringence, spontaneous coiling events and touch-evoked responses measured at 24-48 hpf. Structural and functional abnormalities were largely prevented when NIM811--which proved significantly more effective than cyclosporin A--was administered at 21 hpf, while FK506 was ineffective. Beneficial effects of NIM811 were also detected (i) in primary muscle-derived cell cultures from UCMD and BM patients, where the typical mitochondrial alterations and depolarizing response to rotenone and oligomycin were significantly reduced; and (ii) in the Col6a1(-/-) myopathic mouse model, where apoptosis was prevented and muscle strength was increased. Since the PTP of zebrafish shares its key regulatory features with the mammalian pore, our results suggest that early treatment with NIM811 should be tested as a potential therapy for UCMD and BM.
Related JoVE Video
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock.
Mol Metab
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle.
Related JoVE Video
The role of satellite cells in muscle hypertrophy.
J. Muscle Res. Cell. Motil.
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.
Related JoVE Video
Cyclosporin A Promotes in vivo Myogenic Response in Collagen VI-Deficient Myopathic Mice.
Front Aging Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mutations of genes encoding for collagen VI cause various muscle diseases in humans, including Bethlem myopathy and Ullrich congenital muscular dystrophy. Collagen VI null (Col6a1 (-/-)) mice are affected by a myopathic phenotype with mitochondrial dysfunction, spontaneous apoptosis of muscle fibers, and defective autophagy. Moreover, Col6a1 (-/-) mice display impaired muscle regeneration and defective self-renewal of satellite cells after injury. Treatment with cyclosporin A (CsA) is effective in normalizing the mitochondrial, apoptotic, and autophagic defects of myofibers in Col6a1 (-/-) mice. A pilot clinical trial with CsA in Ullrich patients suggested that CsA may increase the number of regenerating myofibers. Here, we report the effects of CsA administration at 5?mg/kg body weight every 12?h in Col6a1 (-/-) mice on muscle regeneration under physiological conditions and after cardiotoxin (CdTx)-induced muscle injury. Our findings indicate that CsA influences satellite cell activity and triggers the formation of regenerating fibers in Col6a1 (-/-) mice. Data obtained on injured muscles show that under appropriate administration, regimens CsA is able to stimulate myogenesis in Col6a1 (-/-) mice by significantly increasing the number of myogenin (MyoG)-positive cells and of regenerating myofibers at the early stages of muscle regeneration. CsA is also able to ameliorate muscle regeneration of Col6a1 (-/-) mice subjected to multiple CdTx injuries, with a concurrent maintenance of the satellite cell pool. Our data show that CsA is beneficial for muscle regeneration in Col6a1 (-/-) mice.
Related JoVE Video
Mechanisms modulating skeletal muscle phenotype.
Compr Physiol
PUBLISHED: 11-23-2013
Show Abstract
Hide Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response. © 2013 American Physiological Society. Compr Physiol 3:1645-1687, 2013.
Related JoVE Video
Muscle type and fiber type specificity in muscle wasting.
Int. J. Biochem. Cell Biol.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
Muscle wasting occurs in a variety of conditions, including both genetic diseases, such as muscular dystrophies, and acquired disorders, ranging from muscle disuse to cancer cachexia, from heart failure to aging sarcopenia. In most of these conditions, the loss of muscle tissue is not homogeneous, but involves specific muscle groups, for example Duchenne muscular dystrophy affects most body muscles but spares extraocular muscles, and other dystrophies affect selectively proximal or distal limb muscles. In addition, muscle atrophy can affect specific fiber types, involving predominantly slow type 1 or fast type 2 muscle fibers, and is frequently accompanied by a slow-to-fast or fast-to-slow fiber type shift. For example, muscle disuse, such as spinal cord injury, causes type 1 fiber atrophy with a slow-to-fast fiber type shift, whereas cancer cachexia leads to preferential atrophy of type 2 fibers with a fast-to-slow fiber type shift. The identification of the signaling pathways responsible for the differential response of muscles types and fiber types can lead to a better understanding of the pathogenesis of muscle wasting and to the design of therapeutic interventions appropriate for the specific disorders. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Related JoVE Video
Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease.
EMBO Mol Med
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3-kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15-deficient mouse tissues are competent for LC3-positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7(-/-) mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15(-/-) mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases.
Related JoVE Video
Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity.
J. Cell Biol.
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and ?-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of ?-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity.
Related JoVE Video
AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise.
Related JoVE Video
Collagen VI regulates satellite cell self-renewal and muscle regeneration.
Nat Commun
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Adult muscle stem cells, or satellite cells have essential roles in homeostasis and regeneration of skeletal muscles. Satellite cells are located within a niche that includes myofibers and extracellular matrix. The function of specific extracellular matrix molecules in regulating SCs is poorly understood. Here, we show that the extracellular matrix protein collagen VI is a key component of the satellite cell niche. Lack of collagen VI in Col6a1(-/-) mice causes impaired muscle regeneration and reduced satellite cell self-renewal capability after injury. Collagen VI null muscles display significant decrease of stiffness, which is able to compromise the in vitro and in vivo activity of wild-type satellite cells. When collagen VI is reinstated in vivo by grafting wild-type fibroblasts, the biomechanical properties of Col6a1(-/-) muscles are ameliorated and satellite cell defects rescued. Our findings establish a critical role for an extracellular matrix molecule in satellite cell self-renewal and open new venues for therapies of collagen VI-related muscle diseases.
Related JoVE Video
Mechanisms regulating skeletal muscle growth and atrophy.
FEBS J.
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Skeletal muscle mass increases during postnatal development through a process of hypertrophy, i.e. enlargement of individual muscle fibers, and a similar process may be induced in adult skeletal muscle in response to contractile activity, such as strength exercise, and specific hormones, such as androgens and ?-adrenergic agonists. Muscle hypertrophy occurs when the overall rates of protein synthesis exceed the rates of protein degradation. Two major signaling pathways control protein synthesis, the IGF1-Akt-mTOR pathway, acting as a positive regulator, and the myostatin-Smad2/3 pathway, acting as a negative regulator, and additional pathways have recently been identified. Proliferation and fusion of satellite cells, leading to an increase in the number of myonuclei, may also contribute to muscle growth during early but not late stages of postnatal development and in some forms of muscle hypertrophy in the adult. Muscle atrophy occurs when protein degradation rates exceed protein synthesis, and may be induced in adult skeletal muscle in a variety of conditions, including starvation, denervation, cancer cachexia, heart failure and aging. Two major protein degradation pathways, the proteasomal and the autophagic-lysosomal pathways, are activated during muscle atrophy and variably contribute to the loss of muscle mass. These pathways involve a variety of atrophy-related genes or atrogenes, which are controlled by specific transcription factors, such as FoxO3, which is negatively regulated by Akt, and NF-?B, which is activated by inflammatory cytokines.
Related JoVE Video
BMP signaling controls muscle mass.
Nat. Genet.
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Cell size is determined by the balance between protein synthesis and degradation. This equilibrium is affected by hormones, nutrients, energy levels, mechanical stress and cytokines. Mutations that inactivate myostatin lead to excessive muscle growth in animals and humans, but the signals and pathways responsible for this hypertrophy remain largely unknown. Here we show that bone morphogenetic protein (BMP) signaling, acting through Smad1, Smad5 and Smad8 (Smad1/5/8), is the fundamental hypertrophic signal in mice. Inhibition of BMP signaling causes muscle atrophy, abolishes the hypertrophic phenotype of myostatin-deficient mice and strongly exacerbates the effects of denervation and fasting. BMP-Smad1/5/8 signaling negatively regulates a gene (Fbxo30) that encodes a ubiquitin ligase required for muscle loss, which we named muscle ubiquitin ligase of the SCF complex in atrophy-1 (MUSA1). Collectively, these data identify a critical role for the BMP pathway in adult muscle maintenance, growth and atrophy.
Related JoVE Video
Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mitochondrial calcium handling and its relation with calcium released from sarcoplasmic reticulum (SR) in muscle tissue are subject of lively debate. In this study we aimed to clarify how the SR determines mitochondrial calcium handling using dCASQ-null mice which lack both isoforms of the major Ca(2+)-binding protein inside SR, calsequestrin. Mitochondrial free Ca(2+)-concentration ([Ca(2+)]mito) was determined by means of a genetically targeted ratiometric FRET-based probe. Electron microscopy revealed a highly significant increase in intermyofibrillar mitochondria (+55%) and augmented coupling (+12%) between Ca(2+) release units of the SR and mitochondria in dCASQ-null vs. WT fibers. Significant differences in the baseline [Ca(2+)]mito were observed between quiescent WT and dCASQ-null fibers, but not in the resting cytosolic Ca(2+) concentration. The rise in [Ca(2+)]mito during electrical stimulation occurred in 20-30 ms, while the decline during and after stimulation was governed by 4 rate constants of approximately 40, 1.6, 0.2 and 0.03 s(-1). Accordingly, frequency-dependent increase in [Ca(2+)]mito occurred during sustained contractions. In dCASQ-null fibers the increases in [Ca(2+)]mito were less pronounced than in WT fibers and even lower when extracellular calcium was removed. The amplitude and duration of [Ca(2+)]mito transients were increased by inhibition of mitochondrial Na(+)/Ca(2+) exchanger (mNCX). These results provide direct evidence for fast Ca(2+) accumulation inside the mitochondria, involvement of the mNCX in mitochondrial Ca(2+)-handling and a dependence of mitochondrial Ca(2+)-handling on intracellular (SR) and external Ca(2+) stores in fast skeletal muscle fibers. dCASQ-null mice represent a model for malignant hyperthermia. The differences in structure and in mitochondrial function observed relative to WT may represent compensatory mechanisms for the disease-related reduction of calcium storage capacity of the SR and/or SR Ca(2+)-leakage.
Related JoVE Video
In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel.
FASEB J.
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
The success of skeletal muscle reconstruction depends on finding the most effective, clinically suitable strategy to engineer myogenic cells and biocompatible scaffolds. Satellite cells (SCs), freshly isolated or transplanted within their niche, are presently considered the best source for muscle regeneration. Here, we designed and developed the delivery of either SCs or muscle progenitor cells (MPCs) via an in situ photo-cross-linkable hyaluronan-based hydrogel, hyaluronic acid-photoinitiator (HA-PI) complex. Partially ablated tibialis anterior (TA) of C57BL/6J mice engrafted with freshly isolated satellite cells embedded in hydrogel showed a major improvement in muscle structure and number of new myofibers, compared to muscles receiving hydrogel + MPCs or hydrogel alone. Notably, SCs embedded in HA-PI also promoted functional recovery, as assessed by contractile force measurements. Tissue reconstruction was associated with the formation of both neural and vascular networks and the reconstitution of a functional SC niche. This innovative approach could overcome previous limitations in skeletal muscle tissue engineering.
Related JoVE Video
The modulation of myogenic cells differentiation using a semiconductor-muscle junction.
Biomaterials
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
The present study is aimed to design a prototype of hybrid silicon-muscle cell junction, analog to an artificial neuromuscular junction prototype and relevant to the development of advanced neuro-prostheses and bionic systems. The device achieves focal Electric Capacitive Stimulation (ECS) by coupling of single cells and semiconductors, without electrochemical reaction with the substrate. A voltage change applied to a stimulation spot beneath an electrogenic cell leads to a capacitive current (charge accumulation) that opens voltage-gated ion channels in the membrane and generates an action potential. The myo-electronic junction was employed to chronically stimulate muscle cells via ECS and to induce cytosolic calcium transients in myotubes, fibers isolated from mouse FDB (fast [Ca(2+)](i) transients) and surprisingly also in undifferentiated myoblasts (slow [Ca(2+)](i) waves). The hybrid junction elicited, via chronic ECS, a differential reprogramming of single muscle cells by inducing early muscle contraction maturation and plasticity effects, such as NFAT-C3 nuclear translocation. In addition, in the presence of agrin, chronic ECS induced a modulation of AchR clustering which simulates in vitro synaptogenesis. This methodology can coordinate the myogenic differentiation, thus offering direct but non-invasive single cell/wiring, providing a platform for regenerative medicine strategies.
Related JoVE Video
Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.
Hum. Mol. Genet.
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.
Related JoVE Video
Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration.
Nat. Med.
PUBLISHED: 06-02-2010
Show Abstract
Hide Abstract
Autophagy is crucial in the turnover of cell components, and clearance of damaged organelles by the autophagic-lysosomal pathway is essential for tissue homeostasis. Defects of this degradative system have a role in various diseases, but little is known about autophagy in muscular dystrophies. We have previously found that muscular dystrophies linked to collagen VI deficiency show dysfunctional mitochondria and spontaneous apoptosis, leading to myofiber degeneration. Here we demonstrate that this persistence of abnormal organelles and apoptosis are caused by defective autophagy. Skeletal muscles of collagen VI-knockout (Col6a1(-/-)) mice had impaired autophagic flux, which matched the lower induction of beclin-1 and BCL-2/adenovirus E1B-interacting protein-3 (Bnip3) and the lack of autophagosomes after starvation. Forced activation of autophagy by genetic, dietary and pharmacological approaches restored myofiber survival and ameliorated the dystrophic phenotype of Col6a1(-/-) mice. Furthermore, muscle biopsies from subjects with Bethlem myopathy or Ullrich congenital muscular dystrophy had reduced protein amounts of beclin-1 and Bnip3. These findings indicate that defective activation of the autophagic machinery is pathogenic in some congenital muscular dystrophies.
Related JoVE Video
Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy.
J. Appl. Physiol.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
It is commonly accepted that skeletal muscles from dystrophin-deficient mdx mice are more susceptible than those from wild-type mice to damage from eccentric contractions. However, the downstream mechanisms involved in this enhanced force drop remain controversial. We studied the reduction of contractile force induced by eccentric contractions elicited in vivo in the gastrocnemius muscle of wild-type mice and three distinct models of muscle dystrophy: mdx, alpha-sarcoglycan (Sgca)-null, and collagen 6A1 (Col6a1)-null mice. In mdx and Sgca-null mice, force decreased 35% compared with 14% in wild-type mice. Drop of force in Col6a1-null mice was comparable to that in wild-type mice. To identify the determinants of the force drop, we measured force generation in permeabilized fibers dissected from gastrocnemius muscle that had been exposed in vivo to eccentric contractions and from the contralateral unstimulated muscle. A force loss in skinned fibers after in vivo eccentric contractions was detectable in fibers from mdx and Sgca-null, but not wild-type and Col6a1-null, mice. The enhanced force reduction in mdx and Sgca-null mice was observed only when eccentric contractions were elicited in vivo, since eccentric contractions elicited in vitro had identical effects in wild-type and dystrophic skinned fibers. These results suggest that 1) the enhanced force loss is due to a myofibrillar impairment that is present in all fibers, and not to individual fiber degeneration, and 2) the mechanism causing the enhanced force reduction is active in vivo and is lost after fiber permeabilization.
Related JoVE Video
Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation.
FASEB J.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
A better understanding of the signaling pathways that control muscle growth is required to identify appropriate countermeasures to prevent or reverse the loss of muscle mass and force induced by aging, disuse, or neuromuscular diseases. However, two major issues in this field have not yet been fully addressed. The first concerns the pathways involved in leading to physiological changes in muscle size. Muscle hypertrophy based on perturbations of specific signaling pathways is either characterized by impaired force generation, e.g., myostatin knockout, or incompletely studied from the physiological point of view, e.g., IGF-1 overexpression. A second issue is whether satellite cell proliferation and incorporation into growing muscle fibers is required for a functional hypertrophy. To address these issues, we used an inducible transgenic model of muscle hypertrophy by short-term Akt activation in adult skeletal muscle. In this model, Akt activation for 3 wk was followed by marked hypertrophy ( approximately 50% of muscle mass) and by increased force generation, as determined in vivo by ankle plantar flexor stimulation, ex vivo in intact isolated diaphragm strips, and in single-skinned muscle fibers. No changes in fiber-type distribution and resistance to fatigue were detectable. Bromodeoxyuridine incorporation experiments showed that Akt-dependent muscle hypertrophy was accompanied by proliferation of interstitial cells but not by satellite cell activation and new myonuclei incorporation, pointing to an increase in myonuclear domain size. We can conclude that during a fast hypertrophic growth myonuclear domain can increase without compromising muscle performance.
Related JoVE Video
Smad2 and 3 transcription factors control muscle mass in adulthood.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Loss of muscle mass occurs in a variety of diseases, including cancer, chronic heart failure, aquired immunodeficiency syndrome, diabetes, and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis, and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover, recent results confirm that other transforming growth factor-beta (TGF-beta) members control muscle mass. Using genetic tools, we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF-beta and induce an atrophy program that is muscle RING-finger protein 1 (MuRF1) independent. Furthermore, Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mammalian target of rapamycin (mTOR) signaling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation, especially when they are combined with IGF-1-Akt activators.
Related JoVE Video
Autophagy is required to maintain muscle mass.
Cell Metab.
PUBLISHED: 03-29-2009
Show Abstract
Hide Abstract
The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.
Related JoVE Video
No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle.
J. Gen. Physiol.
Show Abstract
Hide Abstract
The presence and role of functional inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) in adult skeletal muscle are controversial. The current consensus is that, in adult striated muscle, the relative amount of IP(3)Rs is too low and the kinetics of Ca(2+) release from IP(3)R is too slow compared with ryanodine receptors to contribute to the Ca(2+) transient during excitation-contraction coupling. However, it has been suggested that IP(3)-dependent Ca(2+) release may be involved in signaling cascades leading to regulation of muscle gene expression. We have reinvestigated IP(3)-dependent Ca(2+) release in isolated flexor digitorum brevis (FDB) muscle fibers from adult mice. Although Ca(2+) transients were readily induced in cultured C2C12 muscle cells by (a) UTP stimulation, (b) direct injection of IP(3), or (c) photolysis of membrane-permeant caged IP(3), no statistically significant change in calcium signal was detected in adult FDB fibers. We conclude that the IP(3)-IP(3)R system does not appear to affect global calcium levels in adult mouse skeletal muscle.
Related JoVE Video
Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model.
Stem Cells
Show Abstract
Hide Abstract
Mutations in the survival of motor neuron gene (SMN1) are responsible for spinal muscular atrophy, a fatal neuromuscular disorder. Mice carrying a homozygous deletion of Smn exon 7 directed to skeletal muscle (HSA-Cre, Smn(F7/F7) mice) present clinical features of human muscular dystrophies for which new therapeutic approaches are highly warranted. Herein we demonstrate that tail vein transplantation of mouse amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. Second, after cardiotoxin injury of the Tibialis Anterior, only AFS-transplanted mice efficiently regenerate. Most importantly, secondary transplants of satellite cells (SCs) derived from treated mice show that AFS cells integrate into the muscle stem cell compartment and have long-term muscle regeneration capacity indistinguishable from that of wild-type-derived SC. This is the first study demonstrating the functional and stable integration of AFS cells into the skeletal muscle, highlighting their value as cell source for the treatment of muscular dystrophies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.