JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Disaccharides Impact the Lateral Organization of Lipid Membranes.
J. Am. Chem. Soc.
PUBLISHED: 10-16-2014
Show Abstract
Hide Abstract
Disaccharides are well-known for their membrane protective ability. Interaction between sugars and multicomponent membranes, however, remains largely unexplored. Here, we combine molecular dynamics simulations and fluorescence microscopy to study the effect of mono- and disaccharides on membranes that phase separate into Lo and Ld domains. We find that nonreducing disaccharides, sucrose and trehalose, strongly destabilize the phase separation leading to uniformly mixed membranes as opposed to monosaccharides and reducing disaccharides. To unveil the driving force for this process, simulations were performed in which the sugar linkage was artificially modified. The availability of accessible interfacial binding sites that can accommodate the nonreducing disaccharides is key for their strong impact on lateral membrane organization. These exclusive interactions between the nonreducing sugars and the membranes may rationalize why organisms such as yeasts, tardigrades, nematodes, bacteria, and plants accumulate sucrose and trehalose, offering cell protection under anhydrobiotic conditions. The proposed mechanism might prove to be a more generic way by which surface bound agents could affect membranes.
Related JoVE Video
Impact of osmotic stress on protein diffusion in Lactococcus lactis.
Mol. Microbiol.
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582?kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ??1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria.
Related JoVE Video
Systematic identification of tRNAome and its dynamics in Lactococcus lactis.
Mol. Microbiol.
PUBLISHED: 07-06-2014
Show Abstract
Hide Abstract
Transfer RNAs (tRNAs) through their abundance and modification pattern significantly influence protein translation. Here, we present a systematic analysis of the tRNAome of Lactococcus lactis. Using the next-generation sequencing approach, we identified 40 tRNAs which carry 16 different post-transcriptional modifications as revealed by mass spectrometry analysis. While small modifications are located in the tRNA body, hypermodified nucleotides are mainly present in the anticodon loop, which through wobbling expand the decoding potential of the tRNAs. Using tRNA-based microarrays, we also determined the dynamics in tRNA abundance upon changes in the growth rate and heterologous protein overexpression stress. With a fourfold increase in the growth rate, the relative abundance of tRNAs cognate to low abundance codons decrease, while the tRNAs cognate to major codons remain mostly unchanged. Significant changes in the tRNA abundances are observed upon protein overexpression stress, which does not correlate with the codon usage of the overexpressed gene but rather reflects the altered expression of housekeeping genes.
Related JoVE Video
Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel.
Mol. Microbiol.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
A critical event during spore germination is the release of Ca-DPA (calcium in complex with dipicolinic acid). The mechanism of release of Ca-DPA through the inner membrane of the spore is not clear, but proteins encoded by the Bacillus subtilis?spoVA operon are involved in the process. We cloned and expressed the spoVAC gene in Escherichia coli and characterized the SpoVAC protein. We show that SpoVAC protects E.?coli against osmotic downshift, suggesting that it might act as a mechanosensitive channel. Purified SpoVAC was reconstituted in unilamellar lipid vesicles to determine the gating mechanism and pore properties of the protein. By means of a fluorescence-dequenching assay, we show that SpoVAC is activated upon insertion into the membrane of the amphiphiles lysoPC and dodecylamine. Patch clamp experiments on E.?coli giant spheroplast as well as giant unilamellar vesicles (GUVs) containing SpoVAC show that the protein forms transient pores with main conductance values of about 0.15 and 0.1 nS respectively. Overall, our data indicate that SpoVAC acts as a mechanosensitive channel and has properties that would allow the release of Ca-DPA and amino acids during germination of the spore.
Related JoVE Video
Regulation of acetate kinase isozymes and its importance for mixed-acid fermentation in Lactococcus lactis.
J. Bacteriol.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate.
Related JoVE Video
Susceptibility to COPD: differential proteomic profiling after acute smoking.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Cigarette smoking is the main risk factor for COPD (Chronic Obstructive Pulmonary Disease), yet only a subset of smokers develops COPD. Family members of patients with severe early-onset COPD have an increased risk to develop COPD and are therefore defined as "susceptible individuals". Here we perform unbiased analyses of proteomic profiles to assess how "susceptible individuals" differ from age-matched "non-susceptible individuals" in response to cigarette smoking. Epithelial lining fluid (ELF) was collected at baseline and 24 hours after smoking 3 cigarettes in young individuals susceptible or non-susceptible to develop COPD and older subjects with established COPD. Controls at baseline were older healthy smoking and non-smoking individuals. Five samples per group were pooled and analysed by stable isotope labelling (iTRAQ) in duplicate. Six proteins were selected and validated by ELISA or immunohistochemistry. After smoking, 23 proteins increased or decreased in young susceptible individuals, 7 in young non-susceptible individuals, and 13 in COPD in the first experiment; 23 proteins increased or decreased in young susceptible individuals, 32 in young non-susceptible individuals, and 11 in COPD in the second experiment. SerpinB3 and Uteroglobin decreased after acute smoke exposure in young non-susceptible individuals exclusively, whereas Peroxiredoxin I, S100A9, S100A8, ALDH3A1 (Aldehyde dehydrogenase 3A1) decreased both in young susceptible and non-susceptible individuals, changes being significantly different between groups for Uteroglobin with iTRAQ and for Serpin B3 with iTRAQ and ELISA measures. Peroxiredoxin I, SerpinB3 and ALDH3A1 increased in COPD patients after smoking. We conclude that smoking induces a differential protein response in ELF of susceptible and non-susceptible young individuals, which differs from patients with established COPD. This is the first study applying unbiased proteomic profiling to unravel the underlying mechanisms that induce COPD. Our data suggest that SerpinB3 and Uteroglobin could be interesting proteins in understanding the processes leading to COPD.
Related JoVE Video
Lactococcus lactis?YfiA is necessary and sufficient for ribosome dimerization.
Mol. Microbiol.
PUBLISHED: 11-19-2013
Show Abstract
Hide Abstract
Dimerization and inactivation of ribosomes in Escherichia coli is a two-step process that involves the binding of ribosome modulation factor (RMF) and hibernation promotion factor (HPF). Lactococcus lactis?MG1363 expresses a protein, YfiA(L) (l) , which associates with ribosomes in the stationary phase of growth and is responsible for dimerization of ribosomes. We show that full-length YfiA(L) (l) is necessary and sufficient for ribosome dimerization in L.?lactis but also functions heterologously in vitro with E.?coli ribosomes. Deletion of the yfiA gene has no effect on the growth rate but diminishes the survival of L.?lactis under energy-starving conditions. The N-terminal domain of YfiA(L) (l) is homologous to HPF from E.?coli, whereas the C-terminal domain has no counterpart in E.?coli. By assembling ribosome dimers in vitro, we could dissect the roles of the N- and C-terminal domains of YfiA(L) (l) . It is concluded that the dimerization and inactivation of ribosomes in L.?lactis and E.?coli differ in several cellular and molecular aspects. In addition, two-dimensional maps of dimeric ribosomes from L.?lactis obtained by single particle electron microscopy show a marked structural difference in monomer association in comparison to the ribosome dimers in E.?coli.
Related JoVE Video
Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter.
J. Biol. Chem.
PUBLISHED: 08-26-2013
Show Abstract
Hide Abstract
Cells control their volume through the accumulation of compatible solutes. The bacterial ATP-binding cassette transporter OpuA couples compatible solute uptake to ATP hydrolysis. Here, we study the gating mechanism and energy coupling of OpuA reconstituted in lipid nanodiscs. We show that anionic lipids are essential both for the gating and the energy coupling. The tight coupling between substrate binding on extracellular domains and ATP hydrolysis by cytoplasmic nucleotide-binding domains allows the study of transmembrane signaling in nanodiscs. From the tight coupling between processes at opposite sides of the membrane, we infer that the ATPase activity of OpuA in nanodiscs reflects solute translocation. Intriguingly, the substrate-dependent, ionic strength-gated ATPase activity of OpuA in nanodiscs is at least an order of magnitude higher than in lipid vesicles (i.e. with identical membrane lipid composition, ionic strength, and nucleotide and substrate concentrations). Even with the chemical components the same, the lateral pressure (profile) of the nanodiscs will differ from that of the vesicles. We thus propose that membrane tension limits translocation in vesicular systems. Increased macromolecular crowding does not activate OpuA but acts synergistically with ionic strength, presumably by favoring gating interactions of like-charged surfaces via excluded volume effects.
Related JoVE Video
Evolved Escherichia coli Strains for Amplified, Functional Expression of Membrane Proteins.
J. Mol. Biol.
PUBLISHED: 07-11-2013
Show Abstract
Hide Abstract
The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins.
Related JoVE Video
Functional diversity of tandem substrate-binding domains in ABC transporters from pathogenic bacteria.
Structure
PUBLISHED: 05-03-2013
Show Abstract
Hide Abstract
The ATP-binding cassette (ABC) transporter GlnPQ is an essential uptake system for amino acids in gram-positive pathogens and related nonpathogenic bacteria. The transporter has tandem substrate-binding domains (SBDs) fused to each transmembrane domain, giving rise to four SBDs per functional transporter complex. We have determined the crystal structures and ligand-binding properties of the SBDs of GlnPQ from Enterococcus faecalis, Streptococcus pneumoniae, and Lactococcus lactis. The tandem SBDs differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. The combined structural, functional, and thermodynamic analysis revealed the roles of individual residues in determining the substrate affinity. We succeeded in converting a low-affinity SBD into a high-affinity receptor and vice versa. Our data indicate that a small number of residues that reside in the binding pocket constitute the major affinity determinants of the SBDs.
Related JoVE Video
How crowded is the prokaryotic cytoplasm?
FEBS Lett.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
We consider biomacromolecular crowding within the cytoplasm of prokaryotic cells as a two-phase system of supercrowded cytogel and dilute cytosol; we simplify and quantify this model for a coccoid cell over a wide range of biomacromolecular crowding. The key result shows that the supercrowded cytogel extends the vectorial character of the plasma membrane deeper into the cytoplasm by about 20-70 nm. We discuss useful physiological insights that this model gives into the functioning of a prokaryotic cell on the micrometer scale.
Related JoVE Video
Quantitative analysis of membrane protein transport across the nuclear pore complex.
Traffic
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Nuclear transport of the Saccharomyces cerevisiae membrane proteins Src1/Heh1 and Heh2 across the NPC is facilitated by a long intrinsically disordered linker between the nuclear localization signal (NLS) and the transmembrane domain. The import of reporter proteins derived from Heh2 is dependent on the FG-Nups in the central channel, and the linker can position the transport factor-bound NLS in the vicinity of the FG-Nups in the central channel, while the transmembrane segment resides in the pore membrane. Here, we present a quantitative analysis of karyopherin-mediated import and passive efflux of reporter proteins derived from Heh2, including data on the mobility of the reporter proteins in different membrane compartments. We show that membrane proteins with extralumenal domains up to 174?kDa, terminal to the linker and NLS, passively leak out of the nucleus via the NPC, albeit at a slow rate. We propose that also during passive efflux, the unfolded linker facilitates the passage of extralumenal domains through the central channel of the NPC.
Related JoVE Video
Proteomic analysis of human epithelial lining fluid by microfluidics-based nanoLC-MS/MS: a feasibility study.
Electrophoresis
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Microfluidics-based nanoLC-MS/MS (chipLC-MS/MS) was used to identify and quantify proteins in epithelial lining fluid (ELF), collected during bronchoscopy from the main bronchi of chronic obstructive pulmonary disease (COPD) patients and healthy controls using microprobes. ELF is a biofluid that is well suited to study pathophysiological processes in the lung, because it contains high concentrations of biologically active molecules. 1D-PAGE followed by in-gel tryptic digestion and chipLC-MS/MS resulted in identification of approximately 300 proteins. A comparative study of ELF from COPD patients and non-COPD controls using chemical stable isotope labeling (iTRAQ®-8Plex) showed that the levels of lactotransferrin, high-mobility group protein B1 (HMGB 1), alpha 1-antichymotrypsin and cofilin-1 differed significantly in ELF from COPD patients and non-COPD controls (p-values < 0.05). These results were reproduced in another, independent set of ELF samples from COPD patients and non-COPD controls and further validated by immunohistochemistry. This study shows the feasibility of performing chipLC-MS/MS and quantitative proteomics in human ELF.
Related JoVE Video
Dual action of BPC194: a membrane active peptide killing bacterial cells.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis.
Related JoVE Video
Cystathionine ?-synthase (CBS) domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA.
J. Biol. Chem.
PUBLISHED: 08-30-2011
Show Abstract
Hide Abstract
The cystathionine ?-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine ?-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity.
Related JoVE Video
Evaluation of pulsed-FRAP and conventional-FRAP for determination of protein mobility in prokaryotic cells.
PLoS ONE
PUBLISHED: 08-24-2011
Show Abstract
Hide Abstract
Macromolecule mobility is often quantified with Fluorescence Recovery After Photobleaching (FRAP). Throughout literature a wide range of diffusion coefficients for GFP in the cytoplasm of Escherichia coli (3 to 14 µm²/s) is reported using FRAP-based approaches. In this study, we have evaluated two of these methods: pulsed-FRAP and "conventional"-FRAP.
Related JoVE Video
Design and synthesis of ATP-based nucleotide analogues and profiling of nucleotide-binding proteins.
Bioconjug. Chem.
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
Two nucleotide-based probes were designed and synthesized in order to enrich samples for specific classes of proteins by affinity-based protein profiling. We focused on the profiling of adenine nucleotide-binding proteins. Two properties were considered in the design of the probes: the bait needs to bind adenine nucleotide-binding proteins with high affinity and carry a second functional group suitable and easily accessible for coupling to a chromatography resin. For this purpose, we synthesized p-biotinyl amidobenzoic acid-ATP (p-BABA-ATP) and p-biotinyl aminomethylbenzoic acid-ATP (p-BAMBA-ATP). p-BABA-ATP and p-BAMBA-ATP both bind to ATP-binding cassette (ABC) proteins with at least 10-fold higher affinity than ATP. Several ABC transporters could be enriched using p-BABA-ATP or p-BAMBA-ATP.
Related JoVE Video
Importance of a hydrophobic pocket for peptide binding in lactococcal OppA.
J. Bacteriol.
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
Lactococcal oligopeptide-binding protein A (OppA) binds peptides with widely varied lengths and sequences. We previously hypothesized that a hydrophobic pocket in OppA preferentially binds a hydrophobic peptide side chain and thus determines its binding register. Two crystal structures of OppA with different nonapeptides now indeed show binding in different registers.
Related JoVE Video
Long unfolded linkers facilitate membrane protein import through the nuclear pore complex.
Science
PUBLISHED: 06-09-2011
Show Abstract
Hide Abstract
Active nuclear import of soluble cargo involves transport factors that shuttle cargo through the nuclear pore complex (NPC) by binding to phenylalanine-glycine (FG) domains. How nuclear membrane proteins cross through the NPC to reach the inner membrane is presently unclear. We found that at least a 120-residue-long intrinsically disordered linker was required for the import of membrane proteins carrying a nuclear localization signal for the transport factor karyopherin-?. We propose an import mechanism for membrane proteins in which an unfolded linker slices through the NPC scaffold to enable binding between the transport factor and the FG domains in the center of the NPC.
Related JoVE Video
Overcoming barriers to membrane protein structure determination.
Nat. Biotechnol.
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.
Related JoVE Video
Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level.
Structure
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.
Related JoVE Video
Reversible optical control of monolayers on water through photoswitchable lipids.
J Phys Chem B
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
We have obtained molecular insights into a monolayer of azobenzene-based photoswitchable lipids self-assembled on water, using the surface sensitive technique vibrational sum-frequency generation spectroscopy in combination with surface pressure measurements. The photolipids can undergo wavelength-dependent, light-triggered cis/trans and trans/cis isomerization, allowing for reversible control of the surface pressure and the molecular ordering of the lipids in the monolayer. If the photoswitchable lipid is embedded in a layer with conventional phospholipids, such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), we show that the surface pressure and molecular ordering of DPPC can be influenced by switching the azobenzene-based lipid between its two states. Remarkably, the state with the higher surface pressure (cis-state) is characterized by a lower degree of molecular order. This counterintuitive result can be understood by noting that the azobenzene moiety in the cis state has a higher dipole moment and therefore favors interaction with water. The surface free energy of the system is lowered (increase of surface pressure) by electrostatic interactions with the lipid headgroups at the interface, resulting in a loop formation of the lipid tail with the cis-azobenzene. This disorder in the tail of the photoswitchable lipid perturbs as well the ordering of DPPC.
Related JoVE Video
The response of Lactococcus lactis to membrane protein production.
PLoS ONE
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient protein production, we set out to understand and compare the cellular consequences of the overproduction of both classes of proteins in Lactococcus lactis, employing a combined proteomics and transcriptomics approach.
Related JoVE Video
Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR.
PLoS ONE
PUBLISHED: 02-10-2011
Show Abstract
Hide Abstract
Membrane proteins comprise an important class of molecules whose study is largely frustrated by several intrinsic constraints, such as their hydrophobicity and added requirements for correct folding. Additionally, the complexity of the cellular mechanisms that are required to insert membrane proteins functionally in the membrane and to monitor their folding state makes it difficult to foresee the yields at which one can obtain them or to predict which would be the optimal production host for a given protein.
Related JoVE Video
Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194.
Biochim. Biophys. Acta
PUBLISHED: 01-26-2011
Show Abstract
Hide Abstract
We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a ?-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.
Related JoVE Video
The molecular basis for antimicrobial activity of pore-forming cyclic peptides.
Biophys. J.
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1-2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides.
Related JoVE Video
The structural basis of modularity in ECF-type ABC transporters.
Nat. Struct. Mol. Biol.
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
Energy coupling factor (ECF) transporters are used for the uptake of vitamins in Prokarya. They consist of an integral membrane protein that confers substrate specificity (the S-component) and an energizing module that is related to ATP-binding cassette (ABC) transporters. S-components for different substrates often do not share detectable sequence similarity but interact with the same energizing module. Here we present the crystal structure of the thiamine-specific S-component ThiT from Lactococcus lactis at 2.0 Å. Extensive protein-substrate interactions explain its high binding affinity for thiamine (K(d) ~10(-10) M). ThiT has a fold similar to that of the riboflavin-specific S-component RibU, with which it shares only 14% sequence identity. Two alanines in a conserved motif (AxxxA) located on the membrane-embedded surface of the S-components mediate the interaction with the energizing module. Based on these findings, we propose a general transport mechanism for ECF transporters.
Related JoVE Video
Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into the liquid-disordered domains of phase-separated model membranes, irrespective of peptide-lipid hydrophobic mismatch. Free energy calculations show that the enthalpic contribution due to the packing of the lipids drives the lateral sorting of the helices. Hydrophobic mismatch regulates the clustering into either small dynamic or large static aggregates. These results reveal important molecular driving forces for the lateral organization and self-assembly of transmembrane helices in heterogeneous model membranes, with implications for the formation of functional protein complexes in real cells.
Related JoVE Video
Apex peptide elution chain selection: a new strategy for selecting precursors in 2D-LC-MALDI-TOF/TOF experiments on complex biological samples.
J. Proteome Res.
PUBLISHED: 09-30-2010
Show Abstract
Hide Abstract
LC-MALDI provides an often overlooked opportunity to exploit the separation between LC-MS and MS/MS stages of a 2D-LC-MS-based proteomics experiment, that is, by making a smarter selection for precursor fragmentation. Apex Peptide Elution Chain Selection (APECS) is a simple and powerful method for intensity-based peptide selection in a complex sample separated by 2D-LC, using a MALDI-TOF/TOF instrument. It removes the peptide redundancy present in the adjacent first-dimension (typically strong cation exchange, SCX) fractions by constructing peptide elution profiles that link the precursor ions of the same peptide across SCX fractions. Subsequently, the precursor ion most likely to fragment successfully in a given profile is selected for fragmentation analysis, selecting on precursor intensity and absence of adjacent ions that may cofragment. To make the method independent of experiment-specific tolerance criteria, we introduce the concept of the branching factor, which measures the likelihood of false clustering of precursor ions based on past experiments. By validation with a complex proteome sample of Arabidopsis thaliana, APECS identified an equivalent number of peptides as a conventional data-dependent acquisition method but with a 35% smaller work load. Consequently, reduced sample depletion allowed further selection of lower signal-to-noise ratio precursor ions, leading to a larger number of identified unique peptides.
Related JoVE Video
Macromolecule diffusion and confinement in prokaryotic cells.
Curr. Opin. Biotechnol.
PUBLISHED: 08-19-2010
Show Abstract
Hide Abstract
We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes.
Related JoVE Video
De novo design of supercharged, unfolded protein polymers, and their assembly into supramolecular aggregates.
Macromol Rapid Commun
PUBLISHED: 08-06-2010
Show Abstract
Hide Abstract
Here we report for the first time the design and expression of highly charged, unfolded protein polymers based on elastin-like peptides (ELPs). Positively and negatively charged variants were achieved by introducing lysine and glutamic acid residues, respectively, within the repetitive pentapeptide units. Subsequently it was demonstrated that the monodisperse protein polyelectrolytes with precisely defined amino acid compositions, sequences, and stereochemistries can be transferred into superstructures exploiting their electrostatic interactions. Hollow capsules were assembled from oppositely charged protein chains by using the layer-by-layer technique. The structures of the capsules were analyzed by various microscopy techniques revealing the fabrication of multilayer containers. Due to their low toxicity in comparison to other polyelectrolytes, supercharged ELPs are appealing candidates for the construction of electrostatically induced scaffolds in biomedicine.
Related JoVE Video
Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies.
J. Bacteriol.
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.
Related JoVE Video
Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition.
Biophys. J.
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
Biological membranes are composed of a large number lipid species differing in hydrophobic length, degree of saturation, and charge and size of the headgroup. We now present data on the effect of hydrocarbon chain length of the lipids and headgroup composition on the lateral mobility of the proteins in model membranes. The trimeric glutamate transporter (GltT) and the monomeric lactose transporter (LacY) were reconstituted in giant unilamellar vesicles composed of unsaturated phosphocholine lipids of varying acyl chain length (14-22 carbon atoms) and various ratios of DOPE/DOPG/DOPC lipids. The lateral mobility of the proteins and of a fluorescent lipid analog was determined as a function of the hydrophobic thickness of the bilayer (h) and lipid composition, using fluorescence correlation spectroscopy. The diffusion coefficient of LacY decreased with increasing thickness of the bilayer, in accordance with the continuum hydrodynamic model of Saffman-Delbrück. For GltT, the mobility had its maximum at diC18:1 PC, which is close to the hydrophobic thickness of the bilayer in vivo. The lateral mobility decreased linearly with the concentration of DOPE but was not affected by the fraction of anionic lipids from DOPG. The addition of DOPG and DOPE did not affect the activity of GltT. We conclude that the hydrophobic thickness of the bilayer is a major determinant of molecule diffusion in membranes, but protein-specific properties may lead to deviations from the Saffman-Delbrück model.
Related JoVE Video
Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress.
Mol. Microbiol.
PUBLISHED: 05-12-2010
Show Abstract
Hide Abstract
We determined the diffusion coefficients (D) of (macro)molecules of different sizes (from approximately 0.5 to 600 kDa) in the cytoplasm of live Escherichia coli cells under normal osmotic conditions and osmotic upshift. D values decreased with increasing molecular weight of the molecules. Upon osmotic upshift, the decrease in D of NBD-glucose was much smaller than that of macromolecules. Barriers for diffusion were found in osmotically challenged cells only for GFP and larger proteins. These barriers are likely formed by the nucleoid and crowding of the cytoplasm. The cytoplasm of E. coli appears as a meshwork allowing the free passage of small molecules while restricting the diffusion of bigger ones.
Related JoVE Video
Purification and functional reconstitution of the bacterial protein translocation pore, the SecYEG complex.
Methods Mol. Biol.
PUBLISHED: 04-27-2010
Show Abstract
Hide Abstract
In bacteria, proteins are secreted across the cytoplasmic membrane by a protein complex termed translocase. The ability to study the activity of the translocase in vitro using purified proteins has been instrumental for our understanding of the mechanisms underlying this process. Here, we describe the protocols for the purification and reconstitution of the SecYEG complex in an active state into liposomes. In addition, fluorescence based in vitro assays are described that allow monitoring translocation activity discontinuously and in real time.
Related JoVE Video
Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides.
Biophys. J.
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
We investigated the effect of amino acid composition and hydrophobic length of alpha-helical transmembrane peptides and the role of electrostatic interactions on the lateral diffusion of the peptides in lipid membranes. Model peptides of varying length and composition, and either tryptophans or lysines as flanking residues, were synthesized. The peptides were labeled with the fluorescent label Alexa Fluor 488 and incorporated into phospholipid bilayers of different hydrophobic thickness and composition. Giant unilamellar vesicles were formed by electroformation, and the lateral diffusion of the transmembrane peptides (and lipids) was determined by fluorescence correlation spectroscopy. In addition, we performed coarse-grained molecular-dynamics simulations of single peptides of different hydrophobic lengths embedded in planar membranes of different thicknesses. Both the experimental and simulation results indicate that lateral diffusion is sensitive to membrane thickness between the peptides and surrounding lipids. We did not observe a difference in the lateral diffusion of the peptides with respect to the presence of tryptophans or lysines as flanking residues. The specific lipid headgroup composition of the membrane has a much less pronounced impact on the diffusion of the peptides than does the hydrophobic thickness.
Related JoVE Video
Evolved Lactococcus lactis strains for enhanced expression of recombinant membrane proteins.
J. Mol. Biol.
PUBLISHED: 04-20-2010
Show Abstract
Hide Abstract
The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant membrane proteins. By fusing green fluorescent protein and an erythromycin resistance marker (ErmC) to the C-terminus of a target protein, one simultaneously selects for variants with enhanced expression (increased erythromycin resistance) and correct folding (green fluorescent protein fluorescence). Three evolved hosts, displaying 2- to 8-fold increased expression of a plethora of proteins, were fully sequenced and shown to carry single-site mutations in the nisK gene. NisK is the sensor protein of a two-component regulatory system that directs nisin-A-mediated expression. The levels of recombinant membrane proteins were increased in the evolved strains, and in some cases their folding states were improved. The generality and simplicity of our approach allow rapid improvements of protein production yields by directed evolution in a high-throughput way.
Related JoVE Video
A structural classification of substrate-binding proteins.
FEBS Lett.
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro- and eukaryotes. A wealth of structural and functional data is available on SBPs, with over 120 unique entries in the Protein Data Bank (PDB). Over a decade ago these proteins were divided into three structural classes, but based on the currently available wealth of structural data, we propose a new classification into six clusters, based on features of their three-dimensional structure.
Related JoVE Video
A karyopherin acts in localized protein synthesis.
Cell Cycle
PUBLISHED: 03-23-2010
Show Abstract
Hide Abstract
Multiple mechanisms are in place to regulate adequate synthesis of proteins, ranging from ways to ensure sequence fidelity, polypeptide folding and protein modification, to control of amounts and subcellular localization of the molecules. Some of these mechanisms act at the level of mRNA export and mRNA targeting. mRNA nuclear export consists of three coupled consecutive steps: (1) the packaging into messenger ribonucleoprotein (mRNP); (2) the transport through the nuclear pore complexes (NPCs); and (3) the directional release into the cytoplasm (reviewed in refs. 1 and 2). The subsequent targeting of mRNA to particular subcellular locations is common in asymmetric cell division in many eukaryotes (reviewed in refs. 3–5) and ensures that proteins are produced at the desired place. Recent studies in Saccharomyces cerevisiae suggest that Karyopherin Kap104p plays a role not only in mRNA export but also in bud-localized protein synthesis. In this report, we reflect on the possible mechanisms by which Kap104p links these events and hypothesize on a possible function of the localized protein synthesis.
Related JoVE Video
Amino acid accumulation limits the overexpression of proteins in Lactococcus lactis.
PLoS ONE
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
Understanding the biogenesis pathways for the functional expression of recombinant proteins, in particular membrane proteins and complex multidomain assemblies, is a fundamental issue in cell biology and of high importance for future progress in structural genomics. In this study, we employed a proteomic approach to understand the difference in expression levels for various multidomain membrane proteins in L. lactis cells grown in complex and synthetic media.
Related JoVE Video
Production of membrane proteins in Escherichia coli and Lactococcus lactis.
Methods Mol. Biol.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
As the equivalent to gatekeepers of the cell, membrane transport proteins perform a variety of critical functions. Progress on the functional and structural characterization of membrane proteins is slowed due to problems associated with their (heterologous) overexpression. Often, overexpression fails or leads to aggregated material from which the production of functionally refolded protein is challenging. It is still difficult to predict whether a given membrane protein can be overproduced in a functional competent state. As a result, the most straightforward strategy to set up an overexpression system is to screen a multitude of conditions, including the comparison of homologues, type and location of (affinity) tags, and distinct expression hosts. Here, we detail methodology to rapidly establish and optimize (membrane) protein expression in Escherichia coli and Lactococcus lactis.
Related JoVE Video
Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.
PLoS ONE
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC) was characterized.
Related JoVE Video
Proteomics of Saccharomyces cerevisiae Organelles.
Mol. Cell Proteomics
PUBLISHED: 12-01-2009
Show Abstract
Hide Abstract
Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data.
Related JoVE Video
Lateral diffusion of membrane proteins.
J. Am. Chem. Soc.
PUBLISHED: 08-14-2009
Show Abstract
Hide Abstract
We measured the lateral mobility of integral membrane proteins reconstituted in giant unilamellar vesicles (GUVs), using fluorescence correlation spectroscopy. Receptor, channel, and transporter proteins with 1-36 transmembrane segments (lateral radii ranging from 0.5 to 4 nm) and a alpha-helical peptide (radius of 0.5 nm) were fluorescently labeled and incorporated into GUVs. At low protein-to-lipid ratios (i.e., 10-100 proteins per microm(2) of membrane surface), the diffusion coefficient D displayed a weak dependence on the hydrodynamic radius (R) of the proteins [D scaled with ln(1/R)], consistent with the Saffman-Delbruck model. At higher protein-to lipid ratios (up to 3000 microm(-2)), the lateral diffusion coefficient of the molecules decreased linearly with increasing the protein concentration in the membrane. The implications of our findings for protein mobility in biological membranes (protein crowding of approximately 25,000 microm(-2)) and use of diffusion measurements for protein geometry (size, oligomerization) determinations are discussed.
Related JoVE Video
The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of lifes emergence.
Microbiol. Mol. Biol. Rev.
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
We have developed a general scenario of prebiotic physicochemical evolution during the Earths Hadean eon and reviewed the relevant literature. We suggest that prebiotic chemical evolution started in microspaces with membranous walls, where external temperature and osmotic gradients were coupled to free-energy gradients of potential chemical reactions. The key feature of this scenario is the onset of an emergent evolutionary transition within the microspaces that is described by the model of complex vectorial chemistry. This transition occurs at average macromolecular crowding of 20 to 30% of the cell volume, when the ranges of action of stabilizing colloidal forces (screened electrostatic forces, hydration, and excluded volume forces) become commensurate. Under these conditions, the macromolecules divide the interior of microspaces into dynamically crowded macromolecular regions and topologically complementary electrolyte pools. Small ions and ionic metabolites are transported vectorially between the electrolyte pools and through the (semiconducting) electrolyte pathways of the crowded macromolecular regions from their high electrochemical potential (where they are biochemically produced) to their lower electrochemical potential (where they are consumed). We suggest a sequence of tentative transitions between major evolutionary periods during the Hadean eon as follows: (i) the early water world, (ii) the appearance of land masses, (iii) the pre-RNA world, (iv) the onset of complex vectorial chemistry, and (v) the RNA world and evolution toward Darwinian thresholds. We stress the importance of high ionic strength of the Hadean ocean (short Debyes lengths) and screened electrostatic interactions that enabled the onset of the vectorial structure of the cytoplasm and the possibility of lifes emergence.
Related JoVE Video
Selenomethionine incorporation in proteins expressed in Lactococcus lactis.
Protein Sci.
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
Lactococcus lactis is a promising host for (membrane) protein overproduction. Here, we describe a protocol for incorporation of selenomethionine (SeMet) into proteins expressed in L. lactis. Incorporation efficiencies of SeMet in the membrane protein complex OpuA (an ABC transporter) and the soluble protein OppA, both from L. lactis, were monitored by mass spectrometry. Both proteins incorporated SeMet with high efficiencies (>90%), which greatly extends the usefulness of the expression host L. lactis for X-ray crystallography purposes. The crystal structure of ligand-free OppA was determined at 2.4 A resolution by a semiautomatic approach using selenium single-wavelength anomalous diffraction phasing.
Related JoVE Video
A method for site-specific labeling of multiple protein thiols.
Protein Sci.
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
We present a generic method for the site-specific and differential labeling of multiple cysteine residues in one protein. Phenyl arsenic oxide has been employed as a protecting group of two closely spaced thiols, allowing first labeling of a single thiol. Subsequently, the protecting group is removed, making available a reactive dithiol site for labeling with a second probe. For proof-of-principle, single and triple Cys mutants of the sulphate binding protein of an ABC transporter were constructed. The closely spaced thiols were engineered on the basis of the crystal structure of the protein and placed in different types of secondary structure elements and at different spacing. We show that phenyl arsenic oxide is a good protecting group for thiols spaced 6.3-7.3 A. Proteins were labeled with two different fluorescent labels and the labeling ratios were determined with UV-Vis spectroscopy and MALDI-Tof mass spectrometry. The average labeling efficiency was approximately 80% for the single thiol and 65-90% for the dithiol site.
Related JoVE Video
Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli.
Biochim. Biophys. Acta
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
This paper presents domain complementation studies in the mannitol transporter, EIImtl, from Escherichia coli. EIImtl is responsible for the transport and concomitant phosphorylation of mannitol over the cytoplasmic membrane. By using tryptophan-less EIImtl as a basis, each of the four phenylalanines located in the cytoplasmic loop between putative transmembrane helices II and III in the membrane-embedded C domain were replaced by tryptophan, yielding the mutants W97, W114, W126, and W133. Except for W97, these single-tryptophan mutants exhibited a high, wild-type-like, binding affinity for mannitol. Of the four mutants, only W114 showed a high mannitol phosphorylation activity. EIImtl is functional as a dimer and the effect of these mutations on the oligomeric activity was investigated via heterodimer formation (C/C domain complementation studies). The low phosphorylation activities of W126 and W133 could be increased 7-28 fold by forming heterodimers with either the C domain of W97 (IICmtlW97) or the inactive EIImtl mutant G196D. W126 and W133, on the other hand, did not complement each other. This study points towards a role of positions 97, 126 and 133 in the oligomeric activation of EIImtl. The involvement of specific residue positions in the oligomeric functioning of a sugar-translocating EII protein has not been presented before.
Related JoVE Video
Biophysical properties of membrane lipids of anammox bacteria: I. Ladderane phospholipids form highly organized fluid membranes.
Biochim. Biophys. Acta
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these ladderane lipids, we have isolated a ladderane phosphatidylcholine and a mixed ladderane phosphatidylethanolamine/phosphatidylglycerol lipid fraction and reconstituted these lipids in different membrane environments. Langmuir monolayer experiments demonstrated that the purified ladderane phospholipids form fluid films with a relatively high lipid packing density. Fluid-like behavior was also observed for ladderane lipids in bilayer systems as monitored by cryo-electron microscopy on large unilamellar vesicles (LUVs) and epi-fluorescence microscopy on giant unilamellar vesicles (GUVs). Analysis of the LUVs by fluorescence depolarization revealed a relatively high acyl chain ordering in the hydrophobic region of the ladderane phospholipids. Micropipette aspiration experiments were applied to study the mechanical properties of ladderane containing lipid bilayers and showed a relatively high apparent area compressibility modulus for ladderane containing GUVs, thereby confirming the fluid and acyl chain ordered characteristics of these lipids. The biophysical findings in this study support the previous postulation that dense membranes in anammox cells protect these microbes against the highly toxic and volatile anammox metabolites.
Related JoVE Video
The yeast vacuolar membrane proteome.
Mol. Cell Proteomics
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
Transport of solutes between the cytosol and the vacuolar lumen is of crucial importance for various functions of vacuoles, including ion homeostasis; detoxification; storage of different molecules such as amino acids, phosphate, and calcium ions; and proteolysis. To identify proteins that catalyze solute transport across the vacuolar membrane, the membrane proteome of purified Saccharomyces cerevisiae vacuoles was analyzed. Subtractive proteomics was used to distinguish contaminants from true vacuolar proteins by comparing the relative abundances of proteins in pure and crude preparations. A robust statistical analysis combining enrichment ranking with the double boundary iterative group analysis revealed that 148 proteins were significantly enriched in the pure vacuolar preparations. Among these proteins were well characterized vacuolar proteins, such as the subunits of the vacuolar H(+)-ATPase, but also proteins that had not previously been assigned to a cellular location, many of which are likely novel vacuolar membrane transporters, e.g. for nucleosides and oligopeptides. Although the majority of contaminating proteins from other organelles were depleted from the pure vacuolar membranes, some proteins annotated to reside in other cellular locations were enriched along with the vacuolar proteins. In many cases the enrichment of these proteins is biologically relevant, and we discuss that a large group is involved in membrane fusion and protein trafficking to vacuoles and may have multiple localizations. Other proteins are degraded in vacuoles, and in some cases database annotations are likely to be incomplete or incorrect. Our work provides a wealth of information on vacuolar biology and a solid basis for further characterization of vacuolar functions.
Related JoVE Video
Biophysical properties of membrane lipids of anammox bacteria: II. Impact of temperature and bacteriohopanoids.
Biochim. Biophys. Acta
PUBLISHED: 03-31-2009
Show Abstract
Hide Abstract
Anammox bacteria possess unique membranes that are mainly comprised of phospholipids with extraordinary "ladderane" hydrocarbon chains containing 3 to 5 linearly concatenated cyclobutane moieties that have been postulated to form relatively impermeable membranes. In a previous study, we demonstrated that purified ladderane phospholipids form fluid-like mono- and bilayers that are tightly packed and relatively rigid. Here we studied the impact of temperature and the presence of bacteriohopanoids on the lipid density and acyl chain ordering in anammox membranes using Langmuir monolayer and fluorescence depolarization experiments on total lipid extracts. We showed that anammox membrane lipids of representatives of Candidatus "Kuenenia stuttgartiensis", Candidatus "Brocadia fulgida" and Candidatus "Scalindua" were closely packed and formed membranes with a relatively high acyl chain ordering at the temperatures at which the cells were grown. Our findings suggest that bacteriohopanoids might play a role in maintaining the membrane fluidity in anammox cells.
Related JoVE Video
Engineering of ion sensing by the cystathionine beta-synthase module of the ABC transporter OpuA.
J. Biol. Chem.
PUBLISHED: 03-27-2009
Show Abstract
Hide Abstract
We have previously shown that the C-terminal cystathionine beta-synthase (CBS) domains of the nucleotide-binding domains of the ABC transporter OpuA, in conjunction with an anionic membrane surface function, act as sensor of internal ionic strength (I(in)). Here, we show that a surface-exposed cationic region in the CBS module domain is critical for ion sensing. The consecutive substitution of up to five cationic residues led to a gradual decrease of the ionic strength dependence of transport. In fact, a 5-fold mutant was essentially independent of salt in the range from 0 to 250 mm KCl (or NaCl), supplemented to medium of 30 mm potassium phosphate. Importantly, the threshold temperature for transport was lowered by 5-7 degrees C and the temperature coefficient Q(10) was lowered from 8 to approximately 1.5 in the 5-fold mutant, indicating that large conformational changes are accompanying the CBS-mediated regulation of transport. Furthermore, by replacing the anionic C-terminal tail residues that extend the CBS module with histidines, the transport of OpuA became pH-dependent, presumably by additional charge interactions of the histidine residues with the membrane. The pH dependence was not observed at high ionic strength. Altogether the analyses of the CBS mutants support the notion that the osmotic regulation of OpuA involves a simple biophysical switching mechanism, in which nonspecific electrostatic interactions of a protein module with the membrane are sufficient to lock the transporter in the inactive state.
Related JoVE Video
Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components.
Extremophiles
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
The crenarchaea Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii, release membrane vesicles into the medium. These membrane vesicles consist of tetraether lipids and are coated with an S-layer. A proteomic analysis reveals the presence of proteins homologous to subunits of the eukaryotic endosomal sorting complex required for transport (ESCRT). Immunodetection of one of these homologs suggest a cell surface localization in intact cells. These data suggest that the membrane vesicles in Sulfolobus sp. emerge from a specific budding process with similarity to the endosomal sorting pathway.
Related JoVE Video
Nuclear transport factor directs localization of protein synthesis during mitosis.
Nat. Cell Biol.
PUBLISHED: 02-08-2009
Show Abstract
Hide Abstract
Export of messenger RNA from the transcription site in the nucleus and mRNA targeting to the translation site in the cytoplasm are key regulatory processes in protein synthesis. In yeast, the mRNA-binding proteins Nab2p and Nab4p/Hrp1p accompany transcripts to their translation site, where the karyopherin Kap104p mediates both their dissociation from the mRNA and their transport back into the nucleus. We found that Kap104p localized to the distal bud tip and the bud neck during cell division, resulting in a localized release of translation-competent mRNA and increased protein synthesis in the emerging daughter cell. Temporally and spatially coordinated localization of Kap104p is a new mechanism for the asymmetric distribution of protein synthesis in dividing cells.
Related JoVE Video
The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-28-2009
Show Abstract
Hide Abstract
Substrate-binding protein-dependent secondary transporters are widespread in prokaryotes and are represented most frequently by members of the tripartite ATP-independent periplasmic (TRAP) transporter family. Here, we report the membrane reconstitution of a TRAP transporter, the sialic acid-specific SiaPQM system from Haemophilus influenzae, and elucidate its mechanism of energy coupling. Uptake of sialic acid via membrane-reconstituted SiaQM depends on the presence of the sialic acid-binding protein, SiaP, and is driven by the electrochemical sodium gradient. The interaction between SiaP and SiaQM is specific as transport is not reconstituted using the orthologous sialic acid-binding protein VC1779. Importantly, the binding protein also confers directionality on the transporter, and reversal of sialic acid transport from import to export is only possible in the presence of an excess of unliganded SiaP.
Related JoVE Video
The structural basis for peptide selection by the transport receptor OppA.
EMBO J.
PUBLISHED: 01-14-2009
Show Abstract
Hide Abstract
Oligopeptide-binding protein A (OppA) from Lactococcus lactis binds peptides of an exceptionally wide range of lengths (4-35 residues), with no apparent sequence preference. Here, we present the crystal structures of OppA in the open- and closed-liganded conformations. The structures directly explain the proteins phenomenal promiscuity. A huge cavity allows binding of very long peptides, and a lack of constraints for the position of the N and C termini of the ligand is compatible with binding of peptides with varying lengths. Unexpectedly, the peptides amino-acid composition (but not the exact sequence) appears to have a function in selection, with a preference for proline-rich peptides containing at least one isoleucine. These properties can be related to the physiology of the organism: L. lactis is auxotrophic for branched chain amino acids and favours proline-rich caseins as a source of amino acids. We propose a new mechanism for peptide selection based on amino-acid composition rather than sequence.
Related JoVE Video
Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells.
Funct. Integr. Genomics
PUBLISHED: 01-05-2009
Show Abstract
Hide Abstract
In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies.
Related JoVE Video
Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli.
Mol. Membr. Biol.
Show Abstract
Hide Abstract
The ATP-binding cassette (ABC) transporter ProU from Escherichia coli translocates a wide range of compatible solutes and contributes to the regulation of cell volume, which is particularly important when the osmolality of the environment fluctuates. We have purified the components of ProU, i.e., the substrate-binding protein ProX, the nucleotide-binding protein ProV and the transmembrane protein ProW, and reconstituted the full transporter complex in liposomes. We engineered a lipid anchor to ProX for surface tethering of this protein to ProVW-containing proteoliposomes. We show that glycine betaine binds to ProX with high-affinity and is transported via ProXVW in an ATP-dependent manner. The activity ProU is salt and anionic lipid-dependent and mimics the ionic strength-gating of transport of the homologous OpuA system.
Related JoVE Video
On the role of individual subunits in MscL gating: "all for one, one for all?".
FASEB J.
Show Abstract
Hide Abstract
The mechanosensitive channel of large conductance (MscL) is a homopentameric membrane protein that protects bacteria from hypoosmotic stress. Its mechanics are coupled to structural changes in the membrane, yet the molecular mechanism of the transition from closed to open states and the cooperation between subunits are poorly understood. To determine the early stages of channel activation, we have created a chemically addressable heteropentameric MscL, which allows us to selectively trigger only one subunit in the pentameric protein assembly. By employing a liposome leakage assay developed in house, we measured the size-exclusion limits of MscL (G22C homopentamer and WTG22C heteropentamer). Patch-clamp, single-channel conductance recordings were used to electrically characterize the various channel substates. We show that a decrease in the hydrophobicity of a pore residue in only one subunit breaks the energy barrier for gating and increases the pore diameter up to 10 Å. A further decrease on the hydrophobicity of the same pore residue in other subunits opens the channel further, up to a diameter of 25 Å. However, it is not sufficient for full opening of the channel. This suggests the presence of supplementary mechanisms other than only the hydrophobic gate for MscL opening and closing and/or insufficient expansion of the channel by hydrophobic gating in the absence of applied membrane tension.
Related JoVE Video
Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation.
J. Bacteriol.
Show Abstract
Hide Abstract
Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation.
Related JoVE Video
Structure and mode of peptide binding of pheromone receptor PrgZ.
J. Biol. Chem.
Show Abstract
Hide Abstract
We present the crystal structure of the pheromone receptor protein PrgZ from Enterococcus faecalis in complex with the heptapeptide cCF10 (LVTLVFV), which is used in signaling between conjugative recipient and donor cells. Comparison of PrgZ with homologous oligopeptide-binding proteins (AppA and OppA) explains the high specificity of PrgZ for hydrophobic heptapeptides versus the promiscuity of peptide binding in the homologous proteins.
Related JoVE Video
Structural divergence of paralogous S components from ECF-type ABC transporters.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Energy coupling factor (ECF) proteins are ATP-binding cassette transporters involved in the import of micronutrients in prokaryotes. They consist of two nucleotide-binding subunits and the integral membrane subunit EcfT, which together form the ECF module and a second integral membrane subunit that captures the substrate (the S component). Different S components, unrelated in sequence and specific for different ligands, can interact with the same ECF module. Here, we present a high-resolution crystal structure at 2.1 ? of the biotin-specific S component BioY from Lactococcus lactis. BioY shares only 16% sequence identity with the thiamin-specific S component ThiT from the same organism, of which we recently solved a crystal structure. Consistent with the lack of sequence similarity, BioY and ThiT display large structural differences (rmsd = 5.1 ?), but the divergence is not equally distributed over the molecules: The S components contain a structurally conserved N-terminal domain that is involved in the interaction with the ECF module and a highly divergent C-terminal domain that binds the substrate. The domain structure explains how the S components with large overall structural differences can interact with the same ECF module while at the same time specifically bind very different substrates with subnanomolar affinity. Solitary BioY (in the absence of the ECF module) is monomeric in detergent solution and binds D-biotin with a high affinity but does not transport the substrate across the membrane.
Related JoVE Video
Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Mechanosensitive (MS) ion channels are membrane proteins that detect and respond to membrane tension in all branches of life. In bacteria, MS channels prevent cells from lysing upon sudden hypoosmotic shock by opening and releasing solutes and water. Despite the importance of MS channels and ongoing efforts to explain their functioning, the molecular mechanism of MS channel gating remains elusive and controversial. Here we report a method that allows single-subunit resolution for manipulating and monitoring "mechanosensitive channel of large conductance" from Escherichia coli. We gradually changed the hydrophobicity of the pore constriction in this homopentameric protein by modifying a critical pore residue one subunit at a time. Our experimental results suggest that both channel opening and closing are initiated by the transmembrane 1 helix of a single subunit and that the participation of each of the five identical subunits in the structural transitions between the closed and open states is asymmetrical. Such a minimal change in the pore environment seems ideal for a fast and energy-efficient response to changes in the membrane tension.
Related JoVE Video
Effect of iTRAQ labeling on the relative abundance of peptide fragment ions produced by MALDI-MS/MS.
J. Proteome Res.
Show Abstract
Hide Abstract
The identification of proteins in proteomics experiments is usually based on mass information derived from tandem mass spectrometry data. To improve the performance of the identification algorithms, additional information available in the fragment peak intensity patterns has been shown to be useful. In this study, we consider the effect of iTRAQ labeling on the fragment peak intensity patterns of singly charged peptides from MALDI tandem MS data. The presence of an iTRAQ-modified basic group on the N-terminus leads to a more pronounced set of b-ion peaks and distinct changes in the abundance of specific peptide types. We performed a simple intensity prediction by using a decision-tree machine learning approach and were able to show that the relative ion abundance in a spectrum can be correctly predicted and distinguished from closely related sequences. This information will be useful for the development of improved method-specific intensity-based protein identification algorithms.
Related JoVE Video
Functional characterization of amphipathic ?-helix in the osmoregulatory ABC transporter OpuA.
Biochemistry
Show Abstract
Hide Abstract
The ATP-binding-cassette transporter OpuA from Lactococcus lactis is composed of two ATPase subunits (OpuAA) and two subunits (OpuABC) with the transmembrane domain fused to an extracellular substrate-binding protein. Of the almost 1900 homologues of OpuA known to date, a subset has an amino-terminal amphipathic helix (plus extra transmembrane segment) fused to the core of the transmembrane domain of the OpuABC subunit. FRET measurements indicate that the amphipathic ?-helix is located close to the membrane surface, where its hydrophobic face interacts with the transport protein rather than the membrane lipids. Next, we determined the functional role of this accessory region by engineering the amphipathic ?-helix. We analyzed the consequence of the mutations in intact cells by monitoring growth and transport of glycine betaine under normal and osmotic stress conditions. More detailed studies were performed in hybrid membrane vesicles, proteoliposomes, and bilayer nanodisks. We show that the amphipathic ?-helix of OpuA is necessary for high activity of OpuA but is not critical for the biogenesis of the protein or the ionic regulation of transport.
Related JoVE Video
The transport of integral membrane proteins across the nuclear pore complex.
Nucleus
Show Abstract
Hide Abstract
The nuclear envelope protects and organizes the genome. The nuclear pore complexes embedded in the nuclear envelope allow selective transport of macromolecules between the cytosol and nucleoplasm, and as such help to control the flow of information from DNA to RNA to proteins. A growing list of integral membrane proteins of the nuclear envelope are described to function in the organization of the genome, as well as the assembly of the NPCs. Here, we discuss how the nuclear pore complex may sort these proteins to obtain a specific protein composition of the inner membrane.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.