JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The natural product phyllanthusmin C enhances IFN-? production by human NK cells through upregulation of TLR-mediated NF-?B signaling.
J. Immunol.
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer-initiating cells, and clear viral infections. However, few reports describe a natural product that stimulates NK cell IFN-? production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-? production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 ng/ml, and stimulated IFN-? production in both human CD56(bright) and CD56(dim) NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C's activation of the NF-?B p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-? production in NK cells. However, IL-12 and IL-15Rs and their related STAT signaling pathways were not responsible for the enhanced IFN-? secretion by PL-C. PL-C induced little or no T cell IFN-? production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively enhance human NK cell IFN-? production. Given the role of IFN-? in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted.
Related JoVE Video
A phase I trial of bortezomib and interferon-?-2b in metastatic melanoma.
J. Immunother.
PUBLISHED: 07-19-2014
Show Abstract
Hide Abstract
The possibility that cytokine administration could enhance the antitumor effects of proteasome inhibition was explored. It was found that coadministration of bortezomib and interferon-? (IFN-?) induced synergistic apoptosis in human melanoma cell lines and prolonged survival in a murine model of melanoma. A phase I study was conducted to determine the tolerability and the maximum tolerated dose of bortezomib when administered in combination with IFN-?-2b to patients with metastatic melanoma. Patients were treated on a 5-week cycle. In week 1 of cycle 1, patients received 5 million U/m(2) IFN-? subcutaneously thrice weekly. During weeks 2-4 of cycle 1, bortezomib was administered intravenously weekly along with IFN-? thrice weekly. There was a treatment break during week 5. After cycle 1, bortezomib was administered in combination with IFN-?. Bortezomib was administered in escalating doses (1.0, 1.3, or 1.6 mg/m) to cohorts of 3 patients. Sixteen patients were treated (8 women, 8 men; median age 59 y). Common grade 3 toxicities included fatigue (5), vomiting (3), and diarrhea (3). Grade 4 toxicities included fatigue (3) and lymphopenia (1). The maximum tolerated dose for bortezomib was 1.3 mg/m(2). One patient had a partial response, and 7 had stable disease. Progression-free survival was 2.5 months, and overall survival was 10.3 months. Bortezomib administration did not augment the ability of IFN-? to induce phosphorylation of STAT1 in circulating immune cells; however, it did lead to reduced plasma levels of proangiogenic cytokines. The combination of bortezomib and IFN-? can be safely administered to melanoma patients.
Related JoVE Video
Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease.
Cancer Immunol. Immunother.
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Elevated levels of myeloid-derived suppressor cells (MDSCs) induced by tumor-derived factors are associated with inhibition of immune responses in patients with gastrointestinal malignancies. We hypothesized that pro-MDSC cytokines and levels of MDSC in the peripheral blood would be elevated in pancreatic adenocarcinoma patients with progressive disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 16 pancreatic cancer patients undergoing chemotherapy and phenotyped for MDSC using a five antigen panel (CD33, HLA-DR, CD11b, CD14, CD15). Patients with stable disease had significantly lower MDSC levels in the peripheral blood than those with progressive disease (1.41 ± 1.12 vs. 5.14 ± 4.58 %, p = 0.013, Wilcoxon test). A cutoff of 2.5 % MDSC identified patients with progressive disease. Patients with ECOG performance status ?2 had a weaker association with increased levels of MDSC. Plasma was obtained from 15 chemonaive patients, 13 patients undergoing chemotherapy and 9 normal donors. Increases in the levels of pro-MDSC cytokines were observed for pancreatic cancer patients versus controls, and the pro-MDSC cytokine IL-6 was increased in those patients undergoing chemotherapy. This study suggests that MDSC in peripheral blood may be a predictive biomarker of chemotherapy failure in pancreatic cancer patients.
Related JoVE Video
Eradicating acute myeloid leukemia in a MllPTD/wt:Flt3ITD/wt murine model: a path to novel therapeutic approaches for human disease.
Blood
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
The coexpression of the MLL partial tandem duplication (PTD) and the FLT3 internal tandem duplication (ITD) mutations associate with a poor outcome in cytogenetically normal acute myeloid leukemia (AML). In mice, a double knock-in (dKI) of Mll(PTD/wt) and Flt3(ITD/wt) mutations induces spontaneous AML with an increase in DNA methyltransferases (Dnmt1, 3a, and 3b) and global DNA methylation index, thereby recapitulating its human AML counterpart. We determined that a regulator of Dnmts, miR-29b, is downregulated in bone marrow of dKI AML mice. Bortezomib exerted a dose-dependent increase in miR-29b expression in AML blasts ex vivo, followed by decreased Dnmts, reduced proliferation, and increased apoptosis. In vivo, bortezomib was not active against dKI AML, yet liposomal-encapsulated bortezomib, as a single agent, reversed downregulation of miR-29b in vivo and induced a long-term (90-day) disease-free remission in 80% of dKI AML mice that exhibited high leukemic burden at the start of therapy, yet showed no signs of relapse at autopsy. Taken together, these data support that liposomal bortezomib, as a single agent, eradicates Mll(PTD/wt):Flt3(ITD/wt) AML in mouse and may represent a powerful and potentially curative approach to high-risk human disease.
Related JoVE Video
Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells.
Blood
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
It is known that microRNAs (miRs) are involved in lymphocyte development, homeostasis, activation, and occasionally malignant transformation. In this study, a miR-155 transgene (tg) was driven to be overexpressed off of the lck promoter in order to assess its effects on natural killer (NK) cell biology in vivo. miR-155 tg mice have an increase in NK-cell number with an excess of the CD11b(low)CD27(high) NK subset, indicative of a halt in terminal NK-cell differentiation that proved to be intrinsic to the cell itself. The increase in NK cells results, in part, from improved survival in medium alone and enhanced expansion with endogenous or exogenous interleukin 15. Phenotypic and functional data from miR-155 tg NK cells showed constitutive activation and enhanced target cell conjugation, resulting in more potent antitumor activity in vitro and improved survival of lymphoma-bearing mice in vivo when compared with wild type NK cells. The enhanced NK-cell survival, expansion, activation, and tumor control that result from overexpression of miR-155 in NK cells could be explained, in part, via diminished expression of the inositol phosphatase SHIP1 and increased activation of ERK and AKT kinases. Thus, the regulation of miR-155 is important for NK-cell development, homeostasis, and activation.
Related JoVE Video
Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice.
Cancer Res.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Our group and others have determined that immune effector cells from patients with advanced cancers exhibit reduced activation of IFN signaling pathways. We hypothesized that increases in immune regulatory cells termed myeloid-derived suppressor cells (MDSC) could interfere with the host immune response to tumors by inhibiting immune cell responsiveness to IFNs. The C26 murine adenocarcinoma model was employed to study immune function in advanced malignancy. C26-bearing mice had significantly elevated levels of GR1(+)CD11b(+) MDSC as compared with control mice, and splenocytes from tumor-bearing mice exhibited reduced phosphorylation of STAT1 (P-STAT1) on Tyr(701) in response to IFN-? or IFN-?. This inhibition was seen in splenic CD4(+) and CD8(+) T cells as well as natural killer cells. In vitro coculture experiments revealed that MDSC inhibited the IFN responsiveness of splenocytes from normal mice. Treatment of C26-bearing mice with gemcitabine or an anti-GR1 antibody led to depletion of MDSC and restored splenocyte IFN responsiveness. Spleens from C26-bearing animals displayed elevated levels of iNOS protein and nitric oxide. In vitro treatment of splenocytes with a nitric oxide donor led to a decreased STAT1 IFN response. The elevation in nitric oxide in C26-bearing mice was associated with increased levels of nitration on STAT1. Finally, splenocytes from iNOS knockout mice bearing C26 tumors exhibited a significantly elevated IFN response as compared with control C26 tumor-bearing mice. These data suggest that nitric oxide produced by MDSC can lead to reduced IFN responsiveness in immune cells.
Related JoVE Video
Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients.
Cell. Immunol.
PUBLISHED: 03-28-2011
Show Abstract
Hide Abstract
Our group has shown in a randomized clinical trial that psychological intervention to reduce stress in patients with stages II and III breast cancer led to enhanced immune function, fewer recurrences and improved overall survival. We hypothesized that patients with high levels of stress would have alterations in myeloid-derived suppressor cells (MDSC) compared to patients with lower stress. PBMC from 16 patients with high stress (n = 8) or with low stress (n = 8) after surgery as measured by the Impact of Event Scale (IES) questionnaire were evaluated for the presence of MDSC. Patients with higher IES scores had significantly elevated salivary cortisol levels (P = 0.013; 13 ?g/dl vs. 9.74 ?g/dl). Levels of IL-1R? were also significantly elevated in the higher IES group (45.09 pg/ml vs. 97.16 pg/ml; P = 0.010). IP 10, G-CSF, and IL-6 were all higher in the high stress group although not to a significant degree. Flow cytometric analysis for CD33+/HLA-DR-neg/CD15+/CD11b+ MDSC revealed increased MDSC in patients with lower IES scores (P = 0.009). CD11b+/CD15+ cells constituted 9.4% of the CD33+/HLA DR-neg cell population in patients with high IES, vs. 27.3% in patients with low IES scores. Additional analyzes of the number of stressful events that affected the patients in addition to their cancer diagnosis revealed that this type of stress measure correlated with elevated levels of MDSC (P = 0.064). These data indicate the existence of a complex relationship between stress and immune function in breast cancer patients.
Related JoVE Video
Enhanced anti-tumor activity of interferon-alpha in SOCS1-deficient mice is mediated by CD4? and CD8? T cells.
Cancer Immunol. Immunother.
PUBLISHED: 03-24-2011
Show Abstract
Hide Abstract
Interferon-alpha (IFN-?) is an immunomodulatory cytokine that is used clinically for the treatment of melanoma in the adjuvant setting. The cellular actions of IFN-? are regulated by the suppressors of cytokine signaling (SOCS) family of proteins. We hypothesized that the anti-tumor activity of exogenous IFN-? would be enhanced in SOCS1-deficient mice. SOCS1-deficient (SOCS1(-/-)) or control (SOCS1(+/+)) mice on an IFN-?(-/-) C57BL/6 background bearing intraperitoneal (i.p.) JB/MS murine melanoma cells were treated for 30 days with i.p. injections of IFN-A/D or PBS (vehicle). Log-rank Kaplan-Meier survival curves were used to evaluate survival. Tumor-bearing control SOCS1(+/+) mice receiving IFN-A/D had significantly enhanced survival versus PBS-treated mice (P = 0.0048). The anti-tumor effects of IFN-A/D therapy were significantly enhanced in tumor-bearing SOCS1(-/-) mice; 75% of these mice survived tumor challenge, whereas PBS-treated SOCS1(-/-) mice all died at 13-16 days (P = 0.00038). Antibody (Ab) depletion of CD8(+) T cells abrogated the anti-tumor effects of IFN-A/D in SOCS1(-/-) mice as compared with mice receiving a control antibody (P = 0.0021). CD4(+) T-cell depletion from SOCS1(-/-) mice also inhibited the effects of IFN-A/D (P = 0.0003). IFN-A/D did not alter expression of CD80 or CD86 on splenocytes of SOCS1(+/+) or SOCS1(-/-) mice, or the proportion of T regulatory cells or myeloid-derived suppressor cells in SOCS1(+/+) or SOCS1(-/-) mice. An analysis of T-cell function did reveal increased proliferation of SOCS1-deficient splenocytes at baseline and in response to mitogenic stimuli. These data suggest that modulation of SOCS1 function in T-cell subsets could enhance the anti-tumor effects of IFN-? in the setting of melanoma.
Related JoVE Video
Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4? T cells from patients with GI malignancy.
Cancer Immunol. Immunother.
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
Interferon-alpha (IFN-?) promotes anti-tumor immunity through its actions on immune cells. We hypothesized that elevated percentages of myeloid-derived suppressor cells (MDSC) and increased pro-inflammatory cytokines in peripheral blood would be associated with impaired response to IFN-? in patients with gastrointestinal (GI) malignancies. This study evaluated relationships between plasma IL-6, IL-10, circulating MDSC subsets, and IFN-?-induced signal transduction in 40 patients with GI malignancies. Plasma IL-6 and IL-10 were significantly higher in patients versus normal donors. CD33(+)HLADR(-)CD11b(+)CD15(+) and CD33(+)HLADR(-/low)CD14(+) MDSC subsets were also elevated in patients versus normal donors (P < 0.0001). Plasma IL-6 was correlated with CD33(+)HLADR(-)CD15(+) MDSC (P = 0.008) and IL-10 with CD33(+)HLADR(-)CD15(-) MDSC (P = 0.002). The percentage of CD15(+) and CD15(-) but not CD14(+) MDSC subsets were inversely correlated with IFN-?-induced STAT1 phosphorylation in CD4(+) T cells, while co-culture with in vitro generated MDSC led to reduced IFN-? responsiveness in both PBMC and the CD4(+) subset of T cells from normal donors. Exploratory multivariable Cox proportional hazards models revealed that an increased percentage of the CD33(+)HLADR(-)CD15(-) MDSC subset was associated with reduced overall survival (P = 0.049), while an increased percentage of the CD33(+)HLADR(-/low)CD14(+) subset was associated with greater overall survival (P = 0.033). These data provide evidence for a unique relationship between specific cytokines, MDSC subsets, and IFN-? responsiveness in patients with GI malignancies.
Related JoVE Video
IL-12 enhances the antitumor actions of trastuzumab via NK cell IFN-? production.
J. Immunol.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-? production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 ?g) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26(HER2/neu)) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-?, monokine induced by IFN-?, and RANTES. Experiments with IFN-?-deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4(+) or CD8(+) T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26(HER2/neu) tumor cells revealed that IFN-? induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-? production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.
Related JoVE Video
Biobehavioral, immune, and health benefits following recurrence for psychological intervention participants.
Clin. Cancer Res.
PUBLISHED: 06-08-2010
Show Abstract
Hide Abstract
A clinical trial was designed to test the hypothesis that a psychological intervention could reduce the risk of cancer recurrence. Newly diagnosed regional breast cancer patients (n = 227) were randomized to the intervention-with-assessment or the assessment-only arm. The intervention had positive psychological, social, immune, and health benefits, and after a median of 11 years the intervention arm was found to have reduced the risk of recurrence (hazard ratio, 0.55; P = 0.034). In follow-up, we hypothesized that the intervention arm might also show longer survival after recurrence. If observed, we then would examine potential biobehavioral mechanisms.
Related JoVE Video
Interleukin-29 binds to melanoma cells inducing Jak-STAT signal transduction and apoptosis.
Mol. Cancer Ther.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
Interleukin-29 (IL-29) is a member of the type III IFN family that has been shown to have antiviral activity and to inhibit cell growth. Melanoma cell lines were tested for expression of the IL-29 receptor (IL-29R) and their response to IL-29. Expression of IL-28R1 and IL-10R2, components of IL-29R, was evaluated using reverse transcription-PCR. A combination of immunoblot analysis and flow cytometry was used to evaluate IL-29-induced signal transduction. U133 Plus 2.0 Arrays and real-time PCR were used to evaluate gene expression. Apoptosis was measured using Annexin V/propridium iodide staining. In situ PCR for IL-29R was done on paraffin-embedded melanoma tumors. Both IL-28R1 and IL-10R2 were expressed on the A375, 1106 MEL, Hs294T, 18105 MEL, MEL 39, SK MEL 5, and F01 cell lines. Incubation of melanoma cell lines with IL-29 (10-1,000 ng/mL) led to phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT2. Microarray analysis and quantitative reverse transcription-PCR showed a marked increase in transcripts of IFN-regulated genes after treatment with IL-29. In the F01 cell line, bortezomib-induced and temozolomide-induced apoptosis was synergistically enhanced following the addition of IL-29. In situ PCR revealed that IL-10R2 and IL-28R1 were present in six of eight primary human melanoma tumors but not in benign nevi specimens. In conclusion, IL-29 receptors are expressed on the surface of human melanoma cell lines and patient samples, and treatment of these cell lines with IL-29 leads to signaling via the Jak-STAT pathway, the transcription of a unique set of genes, and apoptosis.
Related JoVE Video
Prognostic significance of interleukin-6 single nucleotide polymorphism genotypes in neuroblastoma: rs1800795 (promoter) and rs8192284 (receptor).
Clin. Cancer Res.
PUBLISHED: 08-11-2009
Show Abstract
Hide Abstract
Neuroblastoma is a childhood cancer of the sympathetic nervous system and many patients present with high-risk disease. Risk stratification, based on pathology and tumor-derived biomarkers, has improved prediction of clinical outcomes, but overall survival (OS) rates remain unfavorable and new therapeutic targets are needed. Some studies suggest a link between interleukin (IL)-6 and more aggressive behavior in neuroblastoma tumor cells. Therefore, we examined the impact of two IL-6 single nucleotide polymorphisms (SNP) on neuroblastoma disease progression.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.