JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Fibrocyte-like cells from intrauterine growth restriction placentas have a reduced ability to stimulate angiogenesis.
Am. J. Pathol.
PUBLISHED: 05-27-2013
Show Abstract
Hide Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy whereby the fetus fails to achieve its genetic growth potential. Malformation of the placental vasculature is observed in IUGR and may be due to the development of the placenta in a chronically hypoxic environment. Recently, we identified that the predominant stromal cells in the angiogenic zones of the placenta are fibrocyte-like cells. The conditioned medium from fibrocyte-like cells (FcCM) has been shown to stimulate angiogenesis in vitro. Thus, we hypothesized that FcCM from IUGR cells would have a reduced ability to stimulate angiogenesis and that chronic hypoxia would decrease the ability of both normal and IUGR fibrocyte-like cells to stimulate angiogenesis. IUGR FcCM had a reduced ability to stimulate endothelial tubule-like structure formation and an increased ability to stimulate endothelial migration compared with normal FcCM. However, normal and IUGR FcCM produced in chronic hypoxia did not alter endothelial proliferation, migration, or tubule-like structure formation. IUGR FcCM was found to have reduced levels of the pro-angiogenic cytokine IL-8 and increased levels of the anti-angiogenic factors activin-A and pigment epithelium-derived growth factor. Thus, alterations in the ability of IUGR fibrocyte-like cells to stimulate angiogenesis may contribute to the development of vascular malformation in IUGR, but in vitro these changes cannot be attributed to a chronically hypoxic environment.
Related JoVE Video
Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells.
Related JoVE Video
Differential proteomic analysis of highly purified placental cytotrophoblasts in pre-eclampsia demonstrates a state of increased oxidative stress and reduced cytotrophoblast antioxidant defense.
Proteomics
PUBLISHED: 06-27-2011
Show Abstract
Hide Abstract
Proteomics were performed using highly (99.99%) purified cytotrophoblasts from six normal and six pre-eclamptic placentas. Eleven proteins were found which decreased in pre-eclampsia (actin, glutathione S-transferase, peroxiredoxin 6, aldose reductase, heat shock protein 60 (Hsp60), two molecular forms of heat shock protein 70 (Hsp70) ?-tubulin, subunit proteasome, ezrin, protein disulfide isomerase, and phosphoglycerate mutase 1). Only one protein, ?-2-HS-glycoprotein (fetuin), was found to increase its expression. Western blots of actin, Hsp70, ezrin, and glutatione S-transferase confirmed decrease in protein expression. Many of the proteins that decreased are consistent with a state of oxidative stress in the pre-eclamptic placenta and a decreased cytotrophoblast defense against and response to oxidative stress.
Related JoVE Video
Isolation of non-activated monocytes from human umbilical cord blood.
Am. J. Reprod. Immunol.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Methods for monocyte purification are common but few work with umbilical cord monocytes that do not activate the cell for subsequent culture analysis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.