JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms.
Plant Physiol.
PUBLISHED: 09-10-2014
Show Abstract
Hide Abstract
Horseweed (Conyza canadensis), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n = 2x = 18), with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic bases of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000, and PacBio RS) using various libraries with different insertion sizes (approximately 350 bp, 600 bp, 3 kb, and 10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (approximately 350× coverage) of data, the genome was assembled into 13,966 scaffolds with 50% of the assembly = 33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (approximately 153 kb) and a nearly complete mitochondrial genome (approximately 450 kb in 120 scaffolds). The nuclear genome is composed of 44,592 protein-coding genes. Genome resequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single-nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or -susceptible biotypes. The draft genome will be useful to better understand weediness and the evolution of herbicide resistance and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this article represents the first published draft genome of an agricultural weed.
Related JoVE Video
Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1).
Biotechnol J
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Sucrose synthase (SUS) converts sucrose and uridine di-phosphate (UDP) into UDP-glucose and fructose. UDP-glucose is used by the cellulose synthase to produce cellulose for cell wall biosynthesis. For lignocellulosic feedstocks such as switchgrass, the manipulation of cell walls to decrease lignin content is needed to reduce recalcitrance of conversion of biomass into biofuels. Of perhaps equal importance for bioenergy feedstocks is increasing biomass. Four SUS genes were identified in switchgrass. Each gene contained 14 or 15 introns. PvSUS1 was expressed ubiquitously in the tissues tested. PvSUS2 and PvSUS6 were highly expressed in internodes and roots, respectively. PvSUS4 was expressed in low levels in the tissues tested. Transgenic switchgrass plants overexpressing PvSUS1 had increases in plant height by up to 37%, biomass by up to 13.6%, and tiller number by up to 79% compared to control plants. The lignin content was increased in all lines, while the sugar release efficiency was decreased in PvSUS1-overexpressing transgenic switchgrass plants. For switchgrass and other bioenergy feedstocks, the overexpression of SUS1 genes might be a feasible strategy to increase both plant biomass and cellulose content, and to stack with other genes to increase biofuel production per land area cultivated.
Related JoVE Video
ATP-Dependent Binding Cassette Transporter G Family Member 16 Increases Plant Tolerance to Abscisic Acid and Assists in Basal Resistance against Pseudomonas syringae DC3000.
Plant Physiol.
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Plants have been shown previously to perceive bacteria on the leaf surface and respond by closing their stomata. The virulent bacterial pathogen Pseudomonas syringae pv tomato DC3000 (PstDC3000) responds by secreting a virulence factor, coronatine, which blocks the functioning of guard cells and forces stomata to reopen. After it is inside the leaf, PstDC3000 has been shown to up-regulate abscisic acid (ABA) signaling and thereby suppress salicylic acid-dependent resistance. Some wild plants exhibit resistance to PstDC3000, but the mechanisms by which they achieve this resistance remain unknown. Here, we used genome-wide association mapping to identify an ATP-dependent binding cassette transporter gene (ATP-dependent binding cassette transporter G family member16) in Arabidopsis (Arabidopsis thaliana) that contributes to wild plant resistance to PstDC3000. Through microarray analysis and ?-glucuronidase reporter lines, we showed that the gene is up-regulated by ABA, bacterial infection, and coronatine. We also used a green fluorescent protein fusion protein and found that transporter is more likely to localize on plasma membranes than in cell walls. Transferred DNA insertion lines exhibited consistent defective tolerance of exogenous ABA and reduced resistance to infection by PstDC3000. Our conclusion is that ATP-dependent binding cassette transporter G family member16 is involved in ABA tolerance and contributes to plant resistance against PstDC3000. This is one of the first examples, to our knowledge, of ATP-dependent binding cassette transporter involvement in plant resistance to infection by a bacterial pathogen. It also suggests a possible mechanism by which plants reduce the deleterious effects of ABA hijacking during pathogen attack. Collectively, these results improve our understanding of basal resistance in Arabidopsis and offer unique ABA-related targets for improving the innate resistance of plants to bacterial infection.
Related JoVE Video
Correction of gene expression data: Performance-dependency on inter-replicate and inter-treatment biases.
J. Biotechnol.
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies. For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies of correction methods are influenced by the inter-treatment bias as well as the inter-replicate variance. Therefore, we recommend inspecting both of the bias sources in order to apply the most efficient correction method. As an alternative correction strategy, sequential application of different correction approaches is also advised.
Related JoVE Video
Integrated metagenomics and metatranscriptomics analyses of root-associated soil from transgenic switchgrass.
Genome Announc
PUBLISHED: 08-14-2014
Show Abstract
Hide Abstract
The benefits of using transgenic switchgrass with decreased levels of caffeic acid 3-O-methyltransferase (COMT) as biomass feedstock have been clearly demonstrated. However, its effect on the soil microbial community has not been assessed. Here we report metagenomic and metatranscriptomic analyses of root-associated soil from COMT switchgrass compared with nontransgenic counterparts.
Related JoVE Video
Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance.
Plant Biotechnol. J.
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
Gibberellin 2-oxidases (GA2oxs) are a group of 2-oxoglutarate-dependent dioxygenases that catalyse the deactivation of bioactive GA or its precursors through 2?-hydroxylation reaction. In this study, putatively novel switchgrass C20 GA2ox genes were identified with the aim of genetically engineering switchgrass for improved architecture and reduced biomass recalcitrance for biofuel. Three C20 GA2ox genes showed differential regulation patterns among tissues including roots, seedlings and reproductive parts. Using a transgenic approach, we showed that overexpression of two C20 GA2ox genes, that is PvGA2ox5 and PvGA2ox9, resulted in characteristic GA-deficient phenotypes with dark-green leaves and modified plant architecture. The changes in plant morphology appeared to be associated with GA2ox transcript abundance. Exogenous application of GA rescued the GA-deficient phenotypes in transgenic lines. Transgenic semi-dwarf lines displayed increased tillering and reduced lignin content, and the syringyl/guaiacyl lignin monomer ratio accompanied by the reduced expression of lignin biosynthetic genes compared to nontransgenic plants. A moderate increase in the level of glucose release in these transgenic lines might be attributed to reduced biomass recalcitrance as a result of reduced lignin content and lignin composition. Our results suggest that overexpression of GA2ox genes in switchgrass is a feasible strategy to improve plant architecture and reduce biomass recalcitrance for biofuel.
Related JoVE Video
Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives.
Plant Biotechnol. J.
PUBLISHED: 05-11-2014
Show Abstract
Hide Abstract
The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any sequence of interest. Thus, TALEs have been used as a DNA targeting module fused to functional domains for a variety of targeted genomic and epigenomic modifications. TALE nucleases (TALENs) have been used with much success across eukaryotic species to edit genomes. Recently, clustered regularly interspaced palindromic repeats (CRISPRs) that are used as guide RNAs for Cas9 nuclease-specific digestion has been introduced as a highly efficient DNA-targeting platform for genome editing and regulation. Here, we review the discovery, development and limitations of TALENs and CRIPSR/Cas9 systems as genome-engineering platforms in plants. We discuss the current questions, potential improvements and the development of the next-generation genome-editing platforms with an emphasis on producing designer plants to address the needs of agriculture and basic plant biology.
Related JoVE Video
Stable Bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B. juncea.
Plant Sci.
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Transgenic canola (Brassica napus) with a Bacillus thuringiensis cry1Ac gene and a green fluorescent protein (GFP) marker gene was used in hybridization experiments with wild Brassica juncea. Hybrid F1 and successive five backcross generations were obtained. The pod-set frequency on backcrossed B. juncea plants was over 66%, which suggested relatively high crossing compatibility between the hybrids and wild species. The seed setting in BC1 was the least of all generations tested, and then increased at the BC2 generation for which the thousand-seed weight was the highest of all generations. Seed size in backcrossed generations eventually approached that of the wild parent. The plants in all backcrossed generations were consistent with the expected 1:1 segregation ratio of the transgenes. The Bt Cry1Ac protein concentrations at bolting and flowering stages was higher compared to the 4-5-leaf and pod-formation stages. Nonetheless, the Bt toxin in the fifth backcrossing generation (BC5) was sufficient to kill both polyphagous (Helicoverpa armigera) and oligophagous (Plutella xylostella) Lepidoptera. As a consequence, the subsequent generations harboring the transgene from F1 to BC5 could have selection advantage against insect pests. The result is useful in understanding gene flow from transgenic crops and the followed transgene introgression into wild.
Related JoVE Video
Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor.
Mol. Phylogenet. Evol.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
It is commonly believed that gene duplications provide the raw material for morphological evolution. Both the number of genes and size of gene families have increased during the diversification of land plants. Several small proteins that regulate transcription factors have recently been identified in plants, including the LITTLE ZIPPER (ZPR) proteins. ZPRs are post-translational negative regulators, via heterodimerization, of class III Homeodomain Leucine Zipper (C3HDZ) proteins that play a key role in directing plant form and growth. We show that ZPR genes originated as a duplication of a C3HDZ transcription factor paralog in the common ancestor of euphyllophytes (ferns and seed plants). The ZPRs evolved by degenerative mutations resulting in loss all of the C3HDZ functional domains, except the leucine zipper that modulates dimerization. ZPRs represent a novel regulatory module of the C3HDZ network unique to the euphyllophyte lineage, and their origin correlates to a period of rapid morphological changes and increased complexity in land plants. The origin of the ZPRs illustrates the significance of gene duplications in creating developmental complexity during land plant evolution that likely led to morphological evolution.
Related JoVE Video
Expanding the scope of responsible conduct of research instruction.
Account Res
PUBLISHED: 03-15-2014
Show Abstract
Hide Abstract
We argue that responsible conduct research (RCR) instruction should be extended beyond students and trainees funded by the National Institutes of Health (NIH) or National Science Foundation (NSF) to include all students, trainees, faculty, and research staff involved in research. Extending the scope of RCR instruction can help institutions develop and maintain an environment that promotes ethical research conduct. Universities and scientific organizations have objected to expanding the scope of RCR instruction on the grounds that it would be a major undertaking that would require the expenditure of additional institutional resources. We argue, however, that expanding the scope of RCR instruction can be done efficiently without placing undue burdens on institutions.
Related JoVE Video
Two-year field analysis of reduced recalcitrance transgenic switchgrass.
Plant Biotechnol. J.
PUBLISHED: 03-13-2014
Show Abstract
Hide Abstract
Switchgrass (Panicum virgatum L.) is a leading candidate for a dedicated lignocellulosic biofuel feedstock owing to its high biomass production, wide adaptation and low agronomic input requirements. Lignin in cell walls of switchgrass, and other lignocellulosic feedstocks, severely limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars and subsequently biofuels. Low-lignin transgenic switchgrass plants produced by the down-regulation of caffeic acid O-methyltransferase (COMT), a lignin biosynthetic enzyme, were analysed in the field for two growing seasons. COMT transcript abundance, lignin content and the syringyl/guaiacyl lignin monomer ratio were consistently lower in the COMT-down-regulated plants throughout the duration of the field trial. In general, analyses with fully established plants harvested during the second growing season produced results that were similar to those observed in previous greenhouse studies with these plants. Sugar release was improved by up to 34% and ethanol yield by up to 28% in the transgenic lines relative to controls. Additionally, these results were obtained using senesced plant material harvested at the end of the growing season, compared with the young, green tissue that was used in the greenhouse experiments. Another important finding was that transgenic plants were not more susceptible to rust (Puccinia emaculata). The results of this study suggest that lignin down-regulation in switchgrass can confer real-world improvements in biofuel yield without negative consequences to biomass yield or disease susceptibility.
Related JoVE Video
Physiological and transcriptional responses of Baccharis halimifolia to the explosive "composition B" (RDX/TNT) in amended soil.
Environ Sci Pollut Res Int
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Unexploded explosives that include royal demolition explosive (RDX) and trinitrotoluene (TNT) cause environmental concerns for surrounding ecosystems. Baccharis halimifolia is a plant species in the sunflower family that grows naturally near munitions sites on contaminated soils, indicating that it might have tolerance to explosives. B. halimifolia plants were grown on 100, 300, and 750 mg kg(-1) of soil amended with composition B (Comp B) explosive, a mixture of royal demolition explosive and trinitrotoluene. These concentrations are environmentally relevant to such munitions sites. The purpose of the experiment was to mimic contaminated sites to assess the plant's physiological response and uptake of explosives and to identify upregulated genes in response to explosives in order to better understand how this species copes with explosives. Stomatal conductance was not significantly reduced in any treatments. However, net photosynthesis, absorbed photons, and chlorophyll were significantly reduced in all treatments relative to the control plants. The dark-adapted parameter of photosynthesis was reduced only in the 750 mg kg(-1) Comp B treatment. Thus, we observed partial physiological tolerance to Comp B in B. halimifolia plants. We identified and cloned 11 B. halimifolia gene candidates that were orthologous to explosive-responsive genes previously identified in Arabidopsis and poplar. Nine of those genes showed more than 90% similarity to Conyza canadensis (horseweed), which is the closest relative with significant available genomics resources. The expression patterns of these genes were studied using quantitative real-time PCR. Three genes were transcriptionally upregulated in Comp B treatments, and the Cytb6f gene was found to be highly active in all the tested concentrations of Comp B. These three newly identified candidate genes of this explosives-tolerant plant species can be potentially exploited for uses in phytoremediation by overexpressing these genes in transgenic plants and, similarly, by using promoters or variants of promoters from these genes fused to reporter genes in transgenic plants for making phytosensors to report the localized presence of explosives in contaminated soils.
Related JoVE Video
Computational discovery of soybean promoter cis-regulatory elements for the construction of soybean cyst nematode-inducible synthetic promoters.
Plant Biotechnol. J.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
Computational methods offer great hope but limited accuracy in the prediction of functional cis-regulatory elements; improvements are needed to enable synthetic promoter design. We applied an ensemble strategy for de novo soybean cyst nematode (SCN)-inducible motif discovery among promoters of 18 co-expressed soybean genes that were selected from six reported microarray studies involving a compatible soybean-SCN interaction. A total of 116 overlapping motif regions (OMRs) were discovered bioinformatically that were identified by at least four out of seven bioinformatic tools. Using synthetic promoters, the inducibility of each OMR or motif itself was evaluated by co-localization of gain of function of an orange fluorescent protein reporter and the presence of SCN in transgenic soybean hairy roots. Among 16 OMRs detected from two experimentally confirmed SCN-inducible promoters, 11 OMRs (i.e. 68.75%) were experimentally confirmed to be SCN-inducible, leading to the discovery of 23 core motifs of 5- to 7-bp length, of which 14 are novel in plants. We found that a combination of the three best tools (i.e. SCOPE, W-AlignACE and Weeder) could detect all 23 core motifs. Thus, this strategy is a high-throughput approach for de novo motif discovery in soybean and offers great potential for novel motif discovery and synthetic promoter engineering for any plant and trait in crop biotechnology.
Related JoVE Video
Antimicrobial activity of Hibiscus sabdariffa aqueous extracts against Escherichia coli O157:H7 and Staphylococcus aureus in a microbiological medium and milk of various fat concentrations.
J. Food Prot.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Hibiscus sabdariffa L. calyces are widely used in the preparation of beverages. The calyces contain compounds that exhibit antimicrobial activity, yet little research has been conducted on their possible use in food systems as antimicrobials. Aqueous extracts prepared from the brand "Mi Costenita" were sterilized by membrane filtration (0.22-?m pore size) or autoclaving (121 °C, 30 min) and tested for antimicrobial activity against the foodborne pathogens Escherichia coli O157:H7 strains ATCC 43894 and Cider and Staphylococcus aureus strains SA113 and ATCC 27708 in a microbiological medium and ultrahigh-temperature-processed milk with various fat percentages. Extracts heated by autoclaving exhibited greater activity than did filtered extracts in a microbiological medium. Against E. coli, results of 20 mg/ml filtered extract were not different from those of the control, whereas autoclaved extracts reduced viable cells ca. 3 to 4 log CFU/ml. At 60 mg/ml, both extracts inactivated cells after 24 h. There were reduced populations of both strains of S. aureus (ca. 2.7 and 3 log CFU/ml, respectively) after 24 h of incubation in 40 mg/ml filtered extracts. When grown in autoclaved extracts at 40 mg/ml, both strains of S. aureus were inactivated after 9 h. Autoclaved extracts had decreased anthocyanin content (2.63 mg/liter) compared with filtered extracts (14.27 mg/liter), whereas the phenolic content (48.7 and 53.8 mg/g) remained similar for both treatments. Autoclaved extracts were then tested for activity in milk at various fat concentrations (skim [<0.5%], 1%, 2%, and whole [>3.25%]) against a 1:1 mixture of the two strains of E. coli O157:H7 and a 1:1 mixture of the two strains of S. aureus. Extracts at 40 mg/ml inactivated S. aureus after 168 h in skim and whole milk, and E. coli was inactivated after 96 h in 60 mg/ml extract in all fat levels. These findings show the potential use of Hibiscus extracts to prevent the growth of pathogens in foods and beverages.
Related JoVE Video
'Fukusensor:' a genetically engineered plant for reporting DNA damage in response to gamma radiation.
Plant Biotechnol. J.
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
Transgenic plants can be designed to be 'phytosensors' for detection of environmental contaminants and pathogens. In this study, we describe the design and testing of a radiation phytosensor in the form of green fluorescence protein (GFP)-transgenic Arabidopsis plant utilizing a DNA repair deficiency mutant background as a host. Mutant lines of Arabidopsis AtATM (At3g48190), which are hypersensitive to gamma irradiation, were used to generate stable GFP transgenic plants in which a gfp gene was under the control of a strong constitutive CaMV 35S promoter. Mutant and nonmutant genetic background transgenic plants were treated with 0, 1, 5, 10 and 100 Gy radiation doses, respectively, using a Co-60 source. After 1 week, the GFP expression levels were drastically reduced in young leaves of mutant background plants (treated by 10 and 100 Gy), whereas there were scant visible differences in the fluorescence of the nonmutant background plants. These early results indicate that transgenic plants could serve in a relevant sensor system to report radiation dose and the biological effects to organisms in response to radionuclide contamination.
Related JoVE Video
The performance of pathogenic bacterial phytosensing transgenic tobacco in the field.
Plant Biotechnol. J.
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
Phytosensors are useful for rapid-on-the-plant detection of contaminants and agents that cause plant stress. Previously, we produced a series of plant pathogen-inducible synthetic promoters fused to an orange fluorescent protein (OFP) reporter gene and transformed them into tobacco and Arabidopsis thaliana plants; in these transgenic lines, an OFP signal is expressed commensurate with the presence of plant pathogens. We report here the results of 2 years of field experiments using a subset of these bacterial phytosensing tobacco plants. Time-course analysis of field-grown phytosensors showed that a subset of plants responded predictably to treatments with Pseudomonas phytopathogens. There was a twofold induction in the OFP fluorescence driven by two distinct salicylic acid-responsive synthetic promoters, 4 × PR1 and 4 × SARE. Most notably, transgenic plants containing 4 × PR1 displayed the earliest and highest OFP induction at 48 and 72 h postinoculation (h p.i.) upon inoculation with two phytopathogens Pseudomonas syringae pv. tomato and P. syringae pv. tabaci, respectively. These results demonstrate transgenic tobacco harbouring a synthetic inducible promoter-driven OFP could be used to facilitate monitoring and early-warning reporting of phytopathogen infections in agricultural fields.
Related JoVE Video
A genomics approach to deciphering lignin biosynthesis in switchgrass.
Plant Cell
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
It is necessary to overcome recalcitrance of the biomass to saccharification (sugar release) to make switchgrass (Panicum virgatum) economically viable as a feedstock for liquid biofuels. Lignin content correlates negatively with sugar release efficiency in switchgrass, but selecting the right gene candidates for engineering lignin biosynthesis in this tetraploid outcrossing species is not straightforward. To assist this endeavor, we have used an inducible switchgrass cell suspension system for studying lignin biosynthesis in response to exogenous brassinolide. By applying a combination of protein sequence phylogeny with whole-genome microarray analyses of induced cell cultures and developing stem internode sections, we have generated a list of candidate monolignol biosynthetic genes for switchgrass. Several genes that were strongly supported through our bioinformatics analysis as involved in lignin biosynthesis were confirmed by gene silencing studies, in which lignin levels were reduced as a result of targeting a single gene. However, candidate genes encoding enzymes involved in the early steps of the currently accepted monolignol biosynthesis pathway in dicots may have functionally redundant paralogues in switchgrass and therefore require further evaluation. This work provides a blueprint and resources for the systematic genome-wide study of the monolignol pathway in switchgrass, as well as other C4 monocot species.
Related JoVE Video
Advanced genetic tools for plant biotechnology.
Nat. Rev. Genet.
PUBLISHED: 10-09-2013
Show Abstract
Hide Abstract
Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, tunable transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.
Related JoVE Video
Stable transformation of ferns using spores as targets: Pteris vittata and Ceratopteris thalictroides.
Plant Physiol.
PUBLISHED: 08-09-2013
Show Abstract
Hide Abstract
Ferns (Pteridophyta) are very important members of the plant kingdom that lag behind other taxa with regards to our understanding of their genetics, genomics, and molecular biology. We report here, to our knowledge, the first instance of stable transformation of fern with recovery of transgenic sporophytes. Spores of the arsenic hyperaccumulating fern Pteris vittata and tetraploid C-fern Express (Ceratopteris thalictroides) were stably transformed by Agrobacterium tumefaciens with constructs containing the P. vittata actin promoter driving a GUSPlus reporter gene. Reporter gene expression assays were performed on multiple tissues and growth stages of gametophytes and sporophytes. Southern-blot analysis confirmed stable transgene integration in recovered sporophytes and also confirmed that no plasmid from A. tumefaciens was present in the sporophyte tissues. We recovered seven independent transformants of P. vittata and four independent C. thalictroides transgenics. Inheritance analyses using ?-glucuronidase (GUS) histochemical staining revealed that the GUS transgene was stably expressed in second generation C. thalictroides sporophytic tissues. In an independent experiment, the gusA gene that was driven by the 2× Cauliflower mosaic virus 35S promoter was bombarded into P. vittata spores using biolistics, in which putatively stable transgenic gametophytes were recovered. Transformation procedures required no tissue culture or selectable marker genes. However, we did attempt to use hygromycin selection, which was ineffective for recovering transgenic ferns. This simple stable transformation method should help facilitate functional genomics studies in ferns.
Related JoVE Video
Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.).
BMC Biotechnol.
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
Genetically engineered (GE) ringspot virus-resistant papaya cultivars Rainbow and SunUp have been grown in Hawaii for over 10 years. In Hawaii, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities.
Related JoVE Video
High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
Plant Biotechnol. J.
PUBLISHED: 06-21-2013
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) are an important class of small regulatory RNAs. The goal of this study was to analyse stress-responsive miRNAs in switchgrass (Panicum virgatum), the emerging biofuel crop, to facilitate choosing gene targets for improving biomass and biofuel yield. After sequencing three small RNA libraries constructed from control, salt- and drought-treated switchgrass using Illumina sequencing technology, we identified 670 known miRNA families from a total of more than 50 million short reads. A total of 273 miRNAs were identified with precursors: 126 conserved miRNAs and 147 novel miRNAs. Of them, 265 miRNAs were found to have their opposite sequences (miRNA*) with 2-nt overhang on the 3 end. Of them, 194 were detected in switchgrass transcriptome sequences generated from 31 high-throughput RNA sequencing (RNA-Seq) data sets in NCBI. Many miRNAs were differentially or uniquely expressed during salinity or drought stress treatment. We also discovered 11 miRNA clusters containing 29 miRNAs. These identified miRNAs potentially targeted 28 549 genes with a various function, including transcription factors, stress-response proteins and cellulose biosynthesis-related proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the identified miRNAs and their targets were classified to 3779 GO terms including 1534 molecular functions, 1851 biological processes and 394 cellular components and were enriched to 147 KEGG pathways. Interestingly, 195 miRNA families and 450 targets were involved in the biosynthesis pathways of carbon, glucose, starch, fatty acid and lignin and in xylem formation, which could aid in designing next-generation switchgrass for biomass and biofuel.
Related JoVE Video
Bio-synthesis of gold nanoparticles using English ivy (Hedera helix).
J Nanosci Nanotechnol
PUBLISHED: 06-13-2013
Show Abstract
Hide Abstract
Gold nanoparticles (AuNPs) have drawn significant interest in recent years due to unique properties that make them advantageous in biomedical applications, including drug delivery and tissue engineering. In this paper, we have developed multiple methods for the synthesis of AuNPs using English ivy as the substrate. In the first method, we have used actively growing English ivy shoots to develop a sustainable system for the production of ivy nanoparticles. The second method was developed using the extract from the adventitious roots of English ivy. The nanoparticles formed using both methods were compared to determine the size distribution, morphology, and chemical structure of the nanoparticles. Characterization of the AuNPs was conducted using ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). In addition to the structural differences between the AuNPs formed from the different methods, details of the methods in terms of yield, duration, and speed of AuNP formation are also discussed. Further, this paper will show that AuNPs formed using both methods demonstrated efficient uptake in mammalian cells, which provides the potential for biomedical applications. The two methods developed through this research for eco-friendly synthesis of AuNPs present an alternative to traditional chemical synthesis methods.
Related JoVE Video
Mega-nano detection of foodborne pathogens and transgenes using molecular beacon and semiconductor quantum dot technologies.
IEEE Trans Nanobioscience
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
Signature molecules derived from Listeria monocytogenes, Bacillus thuringiensis, and Salmonella Typhimurium were detected directly on food substrates (mega) by coupling molecular beacon technology utilizing fluorescent resonance energy transfer (FRET), luminescent nanoscale semiconductor quantum dots, and nanoscale quenchers. We designed target DNA sequences for detecting hlyA, Bt cry1Ac, and invA genes from L. monocytogenes, B. thuringiensis and Salmonella Typhimurium, respectively, and prepared molecular beacons for specific targets for use in real-time monitoring. We successfully detected increased fluorescence in the presence of signature molecules at molecular beacon (MB) concentrations from 1.17 nM to 40 nM, depending upon system tested in (water, milk or plant leaves), respective target (hlyA, Bt cry1Ac, or invA) and genomic DNA target concentration (50-800 ng). We were able to detect bacterial genomic DNA derived from L. monocytogenes and Salmonella sp. in a food system, 2% milk ( > 20% of total volume). Furthermore, we infiltrated the Bt cry1Ac beacon in the presence of genomic DNA extracted from B. thuringiensis into Arabidopsis thaliana leaves and observed increased fluorescence in the presence of the target, indicating the ability to use these beacons in a plant system.
Related JoVE Video
An orange fluorescent protein tagging system for real-time pollen tracking.
BMC Res Notes
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification.
Related JoVE Video
Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications.
BMC Biotechnol.
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
The introduction of pharmaceutical traits in tobacco for commercial production could benefit from the utilization of a transgene bioconfinement system. It has been observed that interspecific F1Nicotiana hybrids (Nicotiana tabacum × Nicotiana glauca) are sterile and thus proposed that hybrids could be suitable bioconfined hosts for biomanufacturing. We genetically tagged hybrids with green fluorescent protein (GFP), which was used as a visual marker to enable gene flow tracking and quantification for field and greenhouse studies. GFP was used as a useful proxy for pharmaceutical transgenes.
Related JoVE Video
Narrow terahertz attenuation signatures in Bacillus thuringiensis.
J Biophotonics
PUBLISHED: 03-12-2013
Show Abstract
Hide Abstract
Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ?955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Related JoVE Video
Less is more: strategies to remove marker genes from transgenic plants.
BMC Biotechnol.
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Related JoVE Video
Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production.
Biotechnol Biofuels
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, "absent technological breakthroughs", it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold.
Related JoVE Video
Gene use restriction technologies for transgenic plant bioconfinement.
Plant Biotechnol. J.
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
The advances of modern plant technologies, especially genetically modified crops, are considered to be a substantial benefit to agriculture and society. However, so-called transgene escape remains and is of environmental and regulatory concern. Genetic use restriction technologies (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Furthermore, we review the similarities and differences between IPP- and bioconfinement-oriented GURTs, discuss the GURTs design for impeding transgene escape and summarize recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and ecological effects of implementing GURTs for bioconfinement.
Related JoVE Video
Synthetic TAL effectors for targeted enhancement of transgene expression in plants.
Plant Biotechnol. J.
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Transcription activator-like effectors (TALEs), secreted by the pathogenic bacteria Xanthomonas, specifically activate expression of targeted genes in plants. Here, we designed synthetic TALEs that bind to the flanking regions of the TATA-box motif on the CaMV 35S promoter for the purpose of understanding the engineerable hot-spots for increasing transgene expression. We demonstrated that transient expression of de novo-engineered TALEs using agroinfiltration could significantly increase reporter gene expression in stable transgenic tobacco expressing the orange fluorescent protein reporter gene pporRFP under the control of synthetic inducible, minimal or full-length 35S promoters. Moreover, the additive effects of a combination of two different synthetic TALEs could significantly enhance the activation effects of TALEs on reporter gene expression more than when each TALE was used individually. We also studied the effects of the C-terminal domain and the activation domain of synthetic TALEs, as well as the best hot-spots on the 35S promoter on targeted transgene activation. Furthermore, TALE activation of the Arabidopsis MYB transcription factor AtPAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1) in stable transgenic tobacco gave rise to a dark purple colour on infiltrated leaves when driven by four copies of cis-regulatory elements of pathogenesis-related gene (PR1) with enhancer motifs B and A1 from the 35S promoter. These results provide novel insights into the potential applications of synthetic TALEs for targeted gene activation of transgenes in plants.
Related JoVE Video
Characterization of physicochemical properties of ivy nanoparticles for cosmetic application.
J Nanobiotechnology
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Naturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability.
Related JoVE Video
Advances in biotechnology and genomics of switchgrass.
Biotechnol Biofuels
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock.
Related JoVE Video
Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.).
J R Soc Interface
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Bio-inspiration for novel adhesive development has drawn increasing interest in recent years with the discovery of the nanoscale morphology of the gecko footpad and mussel adhesive proteins. Similar to these animal systems, it was discovered that English ivy (Hedera helix L.) secretes a high strength adhesive containing uniform nanoparticles. Recent studies have demonstrated that the ivy nanoparticles not only contribute to the high strength of this adhesive, but also have ultraviolet (UV) protective abilities, making them ideal for sunscreen and cosmetic fillers, and may be used as nanocarriers for drug delivery. To make these applications a reality, the chemical nature of the ivy nanoparticles must be elucidated. In the current work, a method was developed to harvest bulk ivy nanoparticles from an adventitious root culture system, and the chemical composition of the nanoparticles was analysed. UV/visible spectroscopy, inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy and electrophoresis were used in this study to identify the chemical nature of the ivy nanoparticles. Based on this analysis, we conclude that the ivy nanoparticles are proteinaceous.
Related JoVE Video
Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks.
New Phytol.
PUBLISHED: 10-11-2011
Show Abstract
Hide Abstract
• The major obstacle for bioenergy production from switchgrass biomass is the low saccharification efficiency caused by cell wall recalcitrance. Saccharification efficiency is negatively correlated with both lignin content and cell wall ester-linked p-coumarate: ferulate (p-CA : FA) ratio. In this study, we cloned and functionally characterized an R2R3-MYB transcription factor from switchgrass and evaluated its potential for developing lignocellulosic feedstocks. • The switchgrass PvMYB4 cDNAs were cloned and expressed in Escherichia coli, yeast, tobacco and switchgrass for functional characterization. Analyses included determination of phylogenetic relations, in situ hybridization, electrophoretic mobility shift assays to determine binding sites in target promoters, and protoplast transactivation assays to demonstrate domains active on target promoters. • PvMYB4 binds to the AC-I, AC-II and AC-III elements of monolignol pathway genes and down-regulates these genes in vivo. Ectopic overexpression of PvMYB4 in transgenic switchgrass resulted in reduced lignin content and ester-linked p-CA : FA ratio, reduced plant stature, increased tillering and an approx. threefold increase in sugar release efficiency from cell wall residues. • We describe an alternative strategy for reducing recalcitrance in switchgrass by manipulating the expression of a key transcription factor instead of a lignin biosynthetic gene. PvMYB4-OX transgenic switchgrass lines can be used as potential germplasm for improvement of lignocellulosic feedstocks and provide a platform for further understanding gene regulatory networks underlying switchgrass cell wall recalcitrance.
Related JoVE Video
Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species.
Plant Biotechnol. J.
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.
Related JoVE Video
Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing.
BMC Biotechnol.
PUBLISHED: 09-02-2011
Show Abstract
Hide Abstract
We aimed to engineer transgenic plants for the purpose of early detection of plant pathogen infection, which was accomplished by employing synthetic pathogen inducible promoters fused to reporter genes for altered phenotypes in response to the pathogen infection. Toward this end, a number of synthetic promoters consisting of inducible regulatory elements fused to a red fluorescent protein (RFP) reporter were constructed for use in phytosensing.
Related JoVE Video
An efficient and rapid transgenic pollen screening and detection method using flow cytometry.
Biotechnol J
PUBLISHED: 04-29-2011
Show Abstract
Hide Abstract
Assaying for transgenic pollen, a major vector of transgene flow, provides valuable information and essential data for the study of gene flow and assessing the effectiveness of transgene containment. Most studies have employed microscopic screening methods or progeny analyses to estimate the frequency of transgenic pollen. However, these methods are time-consuming and laborious when large numbers of pollen grains must be analyzed to look for rare transgenic pollen grains. Thus, there is an urgent need for the development of a simple, rapid, and high throughput analysis method for transgenic pollen analysis. In this study, our objective was to determine the accuracy of using flow cytometry technology for transgenic pollen quantification in practical application where transgenic pollen is not frequent. A suspension of non-transgenic tobacco pollen was spiked with a known amount of verified transgenic tobacco pollen synthesizing low or high amounts of green fluorescent protein (GFP). The flow cytometric method detected approximately 75% and 100% of pollen grains synthesizing low and high amounts of GFP, respectively. The method is rapid, as it is able to count 5000 pollen grains per minute-long run. Our data indicate that this flow cytometric method is useful to study gene flow and assessment of transgene containment.
Related JoVE Video
High-throughput functional marker assay for detection of Xa/xa and fgr genes in rice (Oryza sativa L.).
Electrophoresis
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
We apply CE for high-throughput analysis of functional markers for marker-assisted selection in rice. The accuracy, throughput and reproducibility of CE analysis for sequence-tagged site (STS) and simple sequence repeat (SSR) markers for bacterial blight resistance and aroma genes are demonstrated by using a CE system. Multiplex PCR products displayed well-differentiated allelic variants using different STS and SSR markers for identification of xa13, Xa21 and fgr genes using the CE system compared to 1.2% agarose gel images. Moreover, consumption of PCR product is much less in the CE system compared to traditional agarose gel systems. Sample consumption is less than 0.1??L per analysis, thereby conserving samples for further downstream analysis. Out of 29 genotypes in BC(1)F(3) generation, 16 plants were found homozygous for all the three genes, viz., xa13, Xa21 and fgr. These homozygous lines can be used as potential donors in rice breeding programmes.
Related JoVE Video
Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode.
Theor. Appl. Genet.
PUBLISHED: 03-16-2011
Show Abstract
Hide Abstract
Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Information about the molecular basis of soybean-SCN interactions is needed to assist future development of effective management tools against this pathogen. Toward this end, soybean transcript abundance was measured using the Affymetrix Soybean Genome Array in a susceptible and a resistant reaction of soybean to SCN infection. Two genetically related soybean sister lines TN02-226 and TN02-275, which are resistant and susceptible, respectively, to the SCN race 2 infection were utilized in these experiments. Pairwise comparisons followed by false discovery rate analysis indicated that the expression levels of 162 transcripts changed significantly in the resistant line, of which 84 increased while 78 decreased. However, in the susceptible line, 1,694 transcripts changed significantly, of which 674 increased while 1,020 decreased. Comparative analyses of these transcripts indicated that a total of 51 transcripts were in common between resistance and susceptible responses. In this set, 42 transcripts increased in the resistant line, but decreased in the susceptible line. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of microarray analysis. Of the transcripts to which a function could be assigned, genes were associated with metabolism, cell wall modification, signal transduction, transcription, and defense. Microarray analyses examining two genetically related soybean lines against the same SCN population provided additional insights into the specific changes in gene expression of a susceptible and a resistant reaction beneficial for identification of genes involved in defense.
Related JoVE Video
Transgene introgression in crop relatives: molecular evidence and mitigation strategies.
Trends Biotechnol.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Incorporation of crop genes into wild and weedy relative populations (i.e. introgression) has long been of interest to ecologists and weed scientists. Potential negative outcomes that result from crop transgene introgression (e.g. extinction of native wild relative populations; invasive spread by wild or weedy hosts) have not been documented, and few examples of transgene introgression exist. However, molecular evidence of introgression from non-transgenic crops to their relatives continues to emerge, even for crops deemed low-risk candidates for transgene introgression. We posit that transgene introgression monitoring and mitigation strategies are warranted in cases in which transgenes are predicted to confer selective advantages and disadvantages to recipient hosts. The utility and consequences of such strategies are examined, and future directions provided.
Related JoVE Video
Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application.
Plant Sci.
PUBLISHED: 01-08-2011
Show Abstract
Hide Abstract
Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has received considerable attention as a potential dedicated biofuel and bioproduct feedstock. Genetic improvement of switchgrass is needed for better cellulosic ethanol production, especially to improve cellulose-to-lignin ratios. Cell suspension cultures offer an in vitro system for mutant selection, mass propagation, gene transfer, and cell biology. Toward this end, switchgrass cell suspension cultures were initiated from embryogenic callus obtained from genotype Alamo 2. They have been established and characterized with different cell type morphologies: sandy, fine milky, and ultrafine cultures. Characterization includes histological analysis using scanning electron microscopy, and utility using protoplast isolation. A high protoplast isolation rate of up to 10(6) protoplasts/1.0g of cells was achieved for the fine milky culture, whereas only a few protoplasts were isolated for the sandy and ultrafine cultures. These results indicate that switchgrass cell suspension type sizably impacts the efficiency of protoplast isolation, suggesting its significance in other applications. The establishment of different switchgrass suspension culture cell types provides the opportunity to gain insights into the versatility of the system that would further augment switchgrass biology research.
Related JoVE Video
Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants.
Plant Cell Rep.
PUBLISHED: 08-24-2010
Show Abstract
Hide Abstract
Functional analysis of candidate transgenes for insect resistance in stably transformed plants is a time-consuming task that can take months to achieve in even the fastest of plant models. In this study, a rapid screening technique is described, which employs candidate transgene transient expression using agroinfiltration in Nicotiana benthamiana combined with a simple insect bioassay. Using this system the known insecticidal protein Cry1Ac is demonstrated to effectively control Helicoverpa zea. Insects fed tissue with synthesized GFP (green fluorescent protein) as a positive control were shown to have enhanced growth and development. Additionally, a Brassica oleracea proteinase inhibitor (BoPI), a less characterized insect resistance candidate, demonstrated effectiveness to decrease the growth and development of H. zea at high levels of transient expression. Bioassays performed on stable transformants showed that BoPI had a low level of insect resistance at the more typical levels of gene transcription found in stably transformed plants. This agroinfiltration-insect bioassay procedure can give a rapid assessment of insect resistance significantly decreasing the time needed for evaluation of candidate genes.
Related JoVE Video
Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes.
Pest Manag. Sci.
PUBLISHED: 08-18-2010
Show Abstract
Hide Abstract
The de novo transcriptome sequencing of a weedy plant using GS-FLX 454 technologies is reported. Horseweed (Conyza canadensis L.) was the first broadleaf weed to evolve glyphosate resistance in agriculture, and also is the most widely distributed glyphosate-resistant weed in the United States and the world. However, available sequence data for this species are scant. The transcriptomic sequence should be useful for gene discovery, and to help elucidate the non-target-based glyphosate resistance mechanism and the genomic basis of weediness.
Related JoVE Video
Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes.
Pest Manag. Sci.
PUBLISHED: 08-04-2010
Show Abstract
Hide Abstract
Waterhemp is a model for weed genomics research in part because it possesses many interesting biological characteristics, rapidly evolves resistance to herbicides and has a solid foundation of previous genetics work. To develop further the genomics resources for waterhemp, the transcriptome was sequenced using Roche GS-FLX 454 pyrosequencing technology.
Related JoVE Video
Sustainable use of biotechnology for bioenergy feedstocks.
Environ Manage
PUBLISHED: 05-07-2010
Show Abstract
Hide Abstract
Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plants biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate technologies that could be applied to perennial grass feedstocks for biocontainment are discussed.
Related JoVE Video
Patent reform in the US: whats at stake for pharmaceutical innovation?
Expert Opin Ther Pat
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
The current patent landscape in the US has not undergone major legislative reform since 1952. The US Senate version of the most recently proposed patent reform legislation puts forward a number of rule changes that could impact the pharmaceutical industry. Among the bills major provisions are moving to a first-to-file system, changes to post-grant review and reexamination procedures, and damages reform. Various industries with a stake in patent reform have responded to the proposed changes. The need for balanced reform makes the stakes particularly high for the pharmaceutical industry which must invest a significant amount of time and money in the research and development process in exchange for already abbreviated patent lifetimes due to the lengthy clinical trial process.
Related JoVE Video
Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.
BMC Bioinformatics
PUBLISHED: 10-08-2009
Show Abstract
Hide Abstract
As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.
Related JoVE Video
Novel software package for cross-platform transcriptome analysis (CPTRA).
BMC Bioinformatics
PUBLISHED: 10-08-2009
Show Abstract
Hide Abstract
Next-generation sequencing techniques enable several novel transcriptome profiling approaches. Recent studies indicated that digital gene expression profiling based on short sequence tags has superior performance as compared to other transcriptome analysis platforms including microarrays. However, the transcriptomic analysis with tag-based methods often depends on available genome sequence. The use of tag-based methods in species without genome sequence should be complemented by other methods such as cDNA library sequencing. The combination of different next generation sequencing techniques like 454 pyrosequencing and Illumina Genome Analyzer (Solexa) will enable high-throughput and accurate global gene expression profiling in species with limited genome information. The combination of transcriptome data acquisition methods requires cross-platform transcriptome data analysis platforms, including a new software package for data processing.
Related JoVE Video
Keeping the genie in the bottle: transgene biocontainment by excision in pollen.
Trends Biotechnol.
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
Gene flow from transgenic plants is an environmental and regulatory concern. While biocontainment might be achieved using male sterility or transgenic mitigation tools, we believe that perhaps the optimal solution might be simply to remove transgenes from pollen. Male sterility might not be ideal for many pollinators, and might not be implementable using standardized genes. Transgenic mitigation might not be useful to control conspecific gene flow (e.g. crop to crop), and relies on competition and not biocontainment per se. Site-specific recombination systems could allow highly efficient excision of transgenes in pollen to eliminate, or at least minimize, unwanted transgene movement via pollen dispersal. There are other potential biotechnologies, such as zinc finger nucleases, that could be also used for transgene excision.
Related JoVE Video
Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific.
Theor. Appl. Genet.
PUBLISHED: 06-13-2009
Show Abstract
Hide Abstract
Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.
Related JoVE Video
Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) x Brassica napus (oilseed rape) hybrid populations.
BMC Biotechnol.
PUBLISHED: 05-11-2009
Show Abstract
Hide Abstract
One theoretical explanation for the relatively poor performance of Brassica rapa (weed) x Brassica napus (crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed x transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur.
Related JoVE Video
Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes.
Funct. Integr. Genomics
PUBLISHED: 03-30-2009
Show Abstract
Hide Abstract
High explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT) are important contaminants in the environment and phytoremediation has been viewed as a cost-effective abatement. There remains, however, an insufficient knowledge-base about how plants respond to explosives, especially in the steady state. Microarray analysis was conducted on Arabidopsis thaliana that were grown in Murashige and Skoog media containing steady-state levels of 0.5 mM RDX or 2.0 microM TNT to study the effect of these compounds on its transcriptional profile. Our results for both RDX and TNT were consistent with the existing theory for xenobiotic metabolism in plants. Among the genes that were differentially expressed included oxidoreductases, cytochrome P450s, transferases, transporters, and several unknown expressed proteins. We discuss the potential role of upregulated genes in plant metabolism, phytoremediation, and phytosensing. Phytosensing, the detection of field contamination using plants, is an end goal of this project.
Related JoVE Video
Fitness and maternal effects in hybrids formed between transgenic oilseed rape (Brassica napus L.) and wild brown mustard [B. juncea (L.) Czern et Coss.] in the field.
Pest Manag. Sci.
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
Gene flow between crops and weedy relatives depends on the survivorship and reproduction of early-generation hybrids in a field environment. The primary aim of this study was to compare the fitness of transgenic crop x wild hybrids with their parental types and a non-transgenic crop type in the field under enhanced temperature and humidity.
Related JoVE Video
Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis.
Plant Physiol. Biochem.
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
Copaifera officinalis, the diesel tree, is known for massive production of oleoresin, mainly composed of sesquiterpene hydrocarbons. In this study, composition of these sesquiterpenes and their concentrations in leaves, stems and roots of C. officinalis at two developmental stages, including the three-week old (TW) seedlings and two-year old (TY) trees, were determined. The leaves of TW seedlings and TY trees contained similar number of sesquiterpenes, which also had comparable concentrations. The stems of TW seedlings had higher concentrations of sesquiterpenes than those of TY trees. In contrast, the number of sesquiterpene species and their concentrations in the roots of TW seedlings were much lower than those in the roots of TY trees. Cluster analysis of sesquiterpenes estimated that there are at least four terpene synthase genes involved in the production of sesquiterpenes in C. officinalis. Because sesquiterpenes are highly volatile, emissions of sesquiterpenes from healthy and wounded TW seedlings were examined using headspace analysis. Whereas very low emission of sesquiterpenes was detected from undamaged plants, the physically injured seedlings emitted a large number of sesquiterpenes, the quality and the relative quantity of which were similar to those in leaves determined using organic extraction. The implications of our findings to the biosynthetic pathways leading to the production of sesquiterpenes as well as their biological roles in C. officinalis are discussed.
Related JoVE Video
Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus).
New Phytol.
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
Does transgenically incorporated insect resistance affect constitutive and herbivore-inducible terpenoid emissions and multitrophic communication under elevated atmospheric CO(2) or ozone (O(3))? This study aimed to clarify the possible interactions between allocation to direct defences (Bacillus thuringiensis (Bt) toxin production) and that to endogenous indirect defences under future climatic conditions. Terpenoid emissions were measured from vegetative-stage non-Bt and Bt Brassica napus grown in growth chambers under control or doubled CO(2), and control (filtered air) or 100 ppb O(3). The olfactometric orientation of Cotesia vestalis, an endoparasitoid of the herbivorous diamondback moth (Plutella xylostella), was assessed under the corresponding CO(2) and O(3) concentrations. The response of terpenoid emission to CO(2) or O(3) elevations was equivalent for Bt and non-Bt plants, but lower target herbivory reduced herbivore-inducible emissions from Bt plants. Elevated CO(2) increased emissions of most terpenoids, whereas O(3) reduced total terpenoid emissions. Cotesia vestalis orientated to host-damaged plants independent of plant type or CO(2) concentration. Under elevated O(3), host-damaged non-Bt plants attracted 75% of the parasitoids, but only 36.8% of parasitoids orientated to host-damaged Bt plants. Elevated O(3) has the potential to perturb specialized food-web communication in Bt crops.
Related JoVE Video
Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent.
Environ. Pollut.
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution.
Related JoVE Video
Smelling global climate change: mitigation of function for plant volatile organic compounds.
Trends Ecol. Evol. (Amst.)
PUBLISHED: 01-02-2009
Show Abstract
Hide Abstract
Plant volatile organic compounds (VOCs) have important roles in plant adaptation to the environment and serve as infochemicals in multitrophic interactions. Global climate change factors, such as increased atmospheric carbon dioxide, ozone and temperature, could alter how insects perceive such compounds. Here we review recent research on the influence of climate change parameters on the ecological functions of VOCs, with specific focus on terpenoids, the best-characterized VOCs. We summarize how emission patterns and concentrations of VOCs could change in future environments, mainly from the perspectives of plant defense and stress responses. We discuss how higher carbon dioxide concentrations, elevated ozone levels and increased temperatures could affect the biological functions of VOCs, particularly their role in plant defense.
Related JoVE Video
Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes.
PLoS ONE
Show Abstract
Hide Abstract
Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ? 1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers.
Related JoVE Video
Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants.
Plant Biotechnol. J.
Show Abstract
Hide Abstract
Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post-symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early-warning sentinels potentially have tremendous utility as wide-area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis-acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time-course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.
Related JoVE Video
Nanoparticle biofabrication using English ivy (Hedera helix).
J Nanobiotechnology
Show Abstract
Hide Abstract
English ivy (Hedera helix) is well known for its adhesive properties and climbing ability. Essential to its ability to adhere to vertical surfaces is the secretion of a nanocomposite adhesive containing spherical nanoparticles, 60-85 nm in diameter, produced exclusively by root hairs present on adventitious roots. These organic nanoparticles have shown promise in biomedical and cosmetic applications, and represent a safer alternative to metal oxide nanoparticles currently available.
Related JoVE Video
A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification.
Phytochemistry
Show Abstract
Hide Abstract
Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5?M, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC-MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.
Related JoVE Video
The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea).
PLoS ONE
Show Abstract
Hide Abstract
Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories.
Related JoVE Video
Very bright orange fluorescent plants: endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants.
BMC Biotechnol.
Show Abstract
Hide Abstract
The expression of fluorescent protein (FP) genes as real-time visual markers, both transiently and stably, has revolutionized plant biotechnology. A palette of colors of FPs is now available for use, but the diversity has generally been underutilized in plant biotechnology. Because of the green and far-red autofluorescent properties of many plant tissues and the FPs themselves, red and orange FPs (RFPs, and OFPs, respectfully) appear to be the colors with maximum utility in plant biotechnology. Within the color palette OFPs have emerged as the brightest FP markers in the visible spectra. This study compares several native, near-native and modified OFPs for their "brightness" and fluorescence, therefore, their usability as marker genes in transgenic plant tissues.
Related JoVE Video
Aqueous extracts of yerba mate (Ilex paraguariensis) as a natural antimicrobial against Escherichia coli O157:H7 in a microbiological medium and pH 6.0 apple juice.
J. Food Prot.
Show Abstract
Hide Abstract
Ilex paraguariensis is popularly used in the preparation of a tea infusion (yerba mate), most commonly produced and consumed in the South American countries of Uruguay, Paraguay, Argentina, and Brazil. In this study, aqueous extracts of commercial tea, derived from the holly plant species I. paraguariensis were evaluated for their ability to inhibit or inactivate Escherichia coli O157:H7 in a microbiological medium and modified apple juice. Dialyzed, lyophilized aqueous extracts were screened for antimicrobial activity against E. coli O157:H7 strains ATCC 43894 and Cider in tryptic soy broth (TSB) and apple juice (adjusted to pH 6.0 to allow for growth of the bacterium). A mixture of the two strains was used as the inoculum when apple juice was used as the medium. MBCs were determined to be ca. 5 and 10 mg/ml for ATCC 43894 and Cider, respectively, in TSB. Higher concentrations of the extract were required to inactivate E. coli O157:H7 in pH-adjusted apple juice. An approximate 4.5-log reduction was observed for E. coli O157:H7 treated with 40 mg/ml extract. It was concluded that aqueous extracts from commercial yerba mate have potential to be used as antimicrobials in foods and beverages against pathogenic E. coli O157:H7.
Related JoVE Video
Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.
Ecol Appl
Show Abstract
Hide Abstract
There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.
Related JoVE Video
MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress.
PLoS ONE
Show Abstract
Hide Abstract
Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.
Related JoVE Video
Misconduct versus honest error and scientific disagreement.
Account Res
Show Abstract
Hide Abstract
Researchers sometimes mistakenly accuse their peers of misconduct. It is important to distinguish between misconduct and honest error or a difference of scientific opinion to prevent unnecessary and time-consuming misconduct proceedings, protect scientists from harm, and avoid deterring researchers from using novel methods or proposing controversial hypotheses. While it is obvious to many researchers that misconduct is different from a scientific disagreement or simply an inadvertent mistake in methods, analysis or misinterpretation of data, applying this distinction to real cases is sometimes not easy. Because the line between misconduct and honest error or a scientific dispute is often unclear, research organizations and institutions should distinguish between misconduct and honest error and scientific disagreement in their policies and practices. These distinctions should also be explained during educational sessions on the responsible conduct of research and in the mentoring process. When researchers wrongfully accuse their peers of misconduct, it is important to help them understand the distinction between misconduct and honest error and differences of scientific judgment or opinion, pinpoint the source of disagreement, and identify the relevant scientific norms. They can be encouraged to settle the dispute through collegial discussion and dialogue, rather than a misconduct allegation.
Related JoVE Video
Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production.
Plant Biotechnol. J.
Show Abstract
Hide Abstract
Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 overexpression on SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were revealed by microarray and quantitative RT-PCR analyses. Morphological alterations, biomass yield, saccharification efficiency and forage digestibility of the transgenic plants were characterized. miR156 controls apical dominance and floral transition in switchgrass by suppressing its target SPL genes. Relatively low levels of miR156 overexpression were sufficient to increase biomass yield while producing plants with normal flowering time. Moderate levels of miR156 led to improved biomass but the plants were non-flowering. These two groups of plants produced 58%-101% more biomass yield compared with the control. However, high miR156 levels resulted in severely stunted growth. The degree of morphological alterations of the transgenic switchgrass depends on miR156 level. Compared with floral transition, a lower miR156 level is required to disrupt apical dominance. The improvement in biomass yield was mainly because of the increase in tiller number. Targeted overexpression of miR156 also improved solubilized sugar yield and forage digestibility, and offered an effective approach for transgene containment.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.