JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
O-GlcNAcylation of FoxO1 in pancreatic ? cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism.
PUBLISHED: 10-30-2013
Show Abstract
Hide Abstract
O-GlcNAcylation on serine/threonine is a post-translational modification that controls the activity of nucleocytoplasmic proteins according to glucose availability. We previously showed that O-GlcNAcylation of FoxO1 in liver cells increases its transcriptional activity. In the present study, we evaluated the potential involvement of FoxO1 O-GlcNAcylation in the context of pancreatic ?-cell glucotoxicity. FoxO1 was O-GlcNAcylated in INS-1 832/13 ? cells and isolated rat pancreatic islets. O-GlcNAcylation of FoxO1 resulted in a 2-fold increase in its transcriptional activity toward a FoxO1 reporter gene and a 3-fold increase in the expression of the insulin-like growth factor-binding protein 1 (Igfbp1) gene at the mRNA level, resulting in IGFBP1 protein oversecretion by the cells. Of note, increased IGFBP1 in the culture medium inhibited the activity of the insulin-like growth factor 1 receptor (IGF1R)/phosphatidyl inositol 3 kinase (PI3K)/Akt pathway. We reveal in this report a novel mechanism by which O-GlcNAcylation inhibits Akt activity through an autocrine mechanism. However, although inhibition of IGFBP1 expression using siRNA restored the PI3 kinase/Akt pathway, it did not rescue INS-1 832/13 cells from high-glucose- or O-glcNAcylation-induced cell death. In contrast, FoxO1 down-regulation by siRNA led to 30 to 60% protection of INS-1 832/13 cells from death mediated by glucotoxic conditions. Therefore, whereas FoxO1 O-GlcNAcylation inhibits Akt through an IGFBP1-mediated autocrine pathway, the deleterious effects of FoxO1 O-GlcNAcylation on cell survival appeared to be independent of this pathway.-Fardini, Y., Masson, E., Boudah, O., Ben Jouira, R., Cosson, C., Pierre-Eugene, C., Kuo, M.-S., Issad, T. O-GlcNAcylation of FoxO1 in pancreatic ? cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.