JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The switch-associated protein 70 (SWAP-70) bundles actin filaments and contributes to the regulation of F-actin dynamics.
J. Biol. Chem.
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks.
Related JoVE Video
Fine tuning of IRF-4 expression by SWAP-70 controls the initiation of plasma cell development.
Eur. J. Immunol.
PUBLISHED: 05-11-2011
Show Abstract
Hide Abstract
The generation of plasma cells (PCs) is key for proper humoral immune responses. The transcription factors IRF-4 and BLIMP-1 (B-lymphocyte induce maturation protein-1) control PC commitment, but the underlying regulatory mechanisms are incompletely understood. Here we have identified SWAP-70 as being critically involved in Toll-like receptor (TLR)-triggered PC differentiation. Upon activation through various TLRs, Swap-70(-/-) B cells were activated and proliferated normally. However, expression of BLIMP-1 was markedly reduced and PC differentiation was impaired. Four hours of LPS stimulation were sufficient to drive PC differentiation, and SWAP-70 was required during this initial period. Swap-70(-/-) B cells pre-activated in vitro failed to efficiently differentiate into PCs upon adoptive transfer into recipient mice. Re-introduction of SWAP-70 into Swap-70(-/-) B cells rescued their development into PCs, and SWAP-70 over-expression in wild-type (WT) B cells increased PC generation. In the absence of SWAP-70, IRF-4 protein levels were reduced and the IRF-4(high) B220(+) CD138(-) compartment, including PC precursors, was strongly diminished. Ectopic expression of SWAP-70 increases IRF-4 protein levels and PC differentiation in WT and Swap-70(-/-) B cells, and IRF-4 over-expression in Swap-70(-/-) B cells elevates PC differentiation to WT levels. Thus, in a dose-dependent manner, SWAP-70 controls IRF-4 protein expression and thereby regulates the initiation of PC differentiation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.