JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cyatta abscondita: Taxonomy, Evolution, and Natural History of a New Fungus-Farming Ant Genus from Brazil.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Cyatta abscondita, a new genus and species of fungus-farming ant from Brazil, is described based on morphological study of more than 20 workers, two dealate gynes, one male, and two larvae. Ecological field data are summarized, including natural history, nest architecture, and foraging behavior. Phylogenetic analyses of DNA sequence data from four nuclear genes indicate that Cyatta abscondita is the distant sister taxon of the genus Kalathomyrmex, and that together they comprise the sister group of the remaining neoattine ants, an informal clade that includes the conspicuous and well-known leaf-cutter ants. Morphologically, Cyatta abscondita shares very few obvious character states with Kalathomyrmex. It does, however, possess a number of striking morphological features unique within the fungus-farming tribe Attini. It also shares morphological character states with taxa that span the ancestral node of the Attini. The morphology, behavior, and other biological characters of Cyatta abscondita are potentially informative about plesiomorphic character states within the fungus-farming ants and about the early evolution of ant agriculture.
Related JoVE Video
Nesting biology and fungiculture of the fungus-growing ant, Mycetagroicus cerradensis: new light on the origin of higher attine agriculture.
J. Insect Sci.
PUBLISHED: 04-30-2011
Show Abstract
Hide Abstract
The genus Mycetagroicus is perhaps the least known of all fungus-growing ant genera, having been first described in 2001 from museum specimens. A recent molecular phylogenetic analysis of the fungus-growing ants demonstrated that Mycetagroicus is the sister to all higher attine ants (Trachymyrmex, Sericomyrmex, Acromyrmex, Pseudoatta, and Atta), making it of extreme importance for understanding the transition between lower and higher attine agriculture. Four nests of Mycetagroicus cerradensis near Uberlândia, Minas Gerais, Brazil were excavated, and fungus chambers for one were located at a depth of 3.5 meters. Based on its lack of gongylidia (hyphal-tip swellings typical of higher attine cultivars), and a phylogenetic analysis of the ITS rDNA gene region, M. cerradensis cultivates a lower attine fungus in Clade 2 of lower attine (G3) fungi. This finding refines a previous estimate for the origin of higher attine agriculture, an event that can now be dated at approximately 21-25 mya in the ancestor of extant species of Trachymyrmex and Sericomyrmex.
Related JoVE Video
Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants.
J Anim Ecol
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
1.?Arboreal ants are both diverse and ecologically dominant in the tropics. Such ecologically important groups are likely to be particularly useful in ongoing empirical efforts to understand the processes that regulate species diversity and coexistence. 2.?Our study addresses how access to tree-based resources and the diversity of pre-existing nesting cavities affect species diversity and coexistence in tropical arboreal ant assemblages. We focus on assemblage-level responses to these variables at local scales. We first surveyed arboreal ant diversity across three naturally occurring levels of canopy connectivity and a gradient of tree size. We then conducted whole-tree experimental manipulations of canopy connectivity and the diversity of cavity entrance sizes. All work was conducted in the Brazilian savanna or cerrado. 3.?Our survey suggested that species richness was equivalent among levels of connectivity. However, there was a consistent trend of lower species density with low canopy connectivity. This was confirmed at the scale of individual trees, with low-connectivity trees having significantly fewer species across all tree sizes. Our experiment demonstrated directly that low canopy connectivity results in significantly fewer species coexisting per tree. 4.?A diverse array of cavity entrance sizes did not significantly increase overall species per tree. Nevertheless, cavity diversity did significantly increase the species using new cavities on each tree, the species per tree unique to new cavities, total species using new cavities, and total cavity use. The populations of occupied cavities were consistent with newly founded colonies and new nests of established colonies from other trees. Cavity diversity thus appears to greatly affect new colony founding and colony growth. 5.?These results contribute strong evidence that greater resource access and greater cavity diversity have positive effects on species coexistence in local arboreal ant assemblages. More generally, these positive effects are broadly consistent with niche differentiation promoting local species coexistence in diverse arboreal ant assemblages. The contributions of this study to the understanding of the processes of species coexistence are discussed, along with the potential of the focal system for future work on this issue.
Related JoVE Video
Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.
PLoS ONE
PUBLISHED: 07-28-2009
Show Abstract
Hide Abstract
Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1-2 years may jeopardize the long-term conservation of litter arthropod communities.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.