JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium-MOF.
Chem. Commun. (Camb.)
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
By one-step pyrolysis of an indium-MOF with entrapped cobalt dimers in the presence of melamine, heterometallic carbide nanoparticles (Co3InC0.75) embedded in nitrogen-enriched carbon have been prepared and found to exhibit efficient electrocatalytic activity for oxygen reduction reaction with high durability and methanol-tolerance properties.
Related JoVE Video
Size-selective crystallization of homochiral camphorate metal-organic frameworks for lanthanide separation.
J. Am. Chem. Soc.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Lanthanides (Ln) are a group of important elements usually found in nature as mixtures. Their separation is essential for technological applications but is made challenging by their subtly different properties. Here we report that crystallization of homochiral camphorate metal-organic frameworks (MOFs) is highly sensitive to ionic radii of lanthanides and can be used to selectively crystallize a lanthanide element into predesigned MOFs. Two series of camphorate MOFs were synthesized with acetate (Type 1 with early lanthanides La-Dy) or formate (Type 2 with late lanthanides Tb-Lu and Y) as the auxiliary ligand, respectively. The Ln coordination environment in each type exhibits selectivity for Ln(3+) of different sizes, which could form the basis for a new cost-effective method for Ln separation.
Related JoVE Video
Incorporation of iron hydrogenase active sites into a highly stable metal-organic framework for photocatalytic hydrogen generation.
Chem. Commun. (Camb.)
PUBLISHED: 07-26-2014
Show Abstract
Hide Abstract
A new biomimetic heterogeneous photocatalyst ([FeFe]@ZrPF) has been synthesized through the incorporation of homogeneous complex 1 [(í-SCH2)2NC(O)C5H4N]-[Fe2(CO)6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). The immobilized biomimetic [Fe2S2] catalyst inside the MOF shows great improvement in hydrogen generation compared to the reference homogeneous catalyst complex 1.
Related JoVE Video
A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity.
Nanoscale
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
Colored TiO2 has attracted enormous attention due to its visible light absorption and excellent photocatalytic activity. In this report, we develop a simple and facile solid-state chemical reduction approach for a large-scale production of colored TiO2 at mild temperature (300-350 °C). The obtained sample possesses a crystalline core/amorphous shell structure (TiO2@TiO2-x). The oxygen vacancy results in the formation of a disordered TiO2-x shell on the surface of TiO2 nanocrystals. XPS and theoretical calculation results indicate that valence band tail and vacancy band below the conduction band minimum appear for the TiO2-x, which implies that the TiO2@TiO2-x nanocrystal has a narrow band gap and therefore leads to a broad visible light absorption. Oxygen vacancy in a proper concentration promotes the charge separation of photogenerated carriers, which improves the photocatalytic activity of TiO2@TiO2-x nanocrystals. This facile and general method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven H2 production.
Related JoVE Video
In situ preparation of a Ti³? self-doped TiO? film with enhanced activity as photoanode by N?H? reduction.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 06-08-2014
Show Abstract
Hide Abstract
A new synthetic method to fabricate Ti(3+)-modified, highly stable TiO2 photoanodes for H2O oxidation is reported. With Ti foil as both the conducting substrate and the Ti(3+)/Ti(4+) source, one-dimensional blue Ti(3+)/TiO2 crystals were grown by a one-step hydrothermal reaction. The concentration of Ti(3+) was further tuned by N2H4 reduction, leading to a greater photoelectrocatalytic activity, as evidenced by a high photocurrent density of 0.64?mA?cm(-2) at 1.0?V vs RHE under simulated AM 1.5?G illumination. Electron paramagnetic resonance and Mott-Schottky plots reveal that higher charge-carrier density owing to N2H4 reduction contributes to the observed improvement. The generality of this synthesis method was demonstrated by its effectiveness in improving the performance of other types of photoanodes. By integrating the advantages of the 1D TiO2 architecture with those of Ti(3+) self-doping, this work provides a versatile tool toward the fabrication of efficient TiO2 photoanodes.
Related JoVE Video
Anion stripping as a general method to create cationic porous framework with mobile anions.
J. Am. Chem. Soc.
PUBLISHED: 05-16-2014
Show Abstract
Hide Abstract
Metal-organic frameworks (MOFs) with cationic frameworks and mobile anions have many applications from sensing, anion exchange and separation, to fast ion conductivity. Despite recent progress, the vast majority of MOFs have neutral frameworks. A common mechanism for the formation of neutral frameworks is the attachment of anionic species such as F(-) or OH(-) to the framework metal sites, neutralizing an otherwise cationic scaffolding. Here, we report a general method capable of converting such neutral frameworks directly into cationic ones with concurrent generation of mobile anions. Our method is based on the differential affinity between distinct metal ions with framework anionic species. Specifically, Al(3+) is used to strip F(-) anions away from framework Cr(3+) sites, leading to cationic frameworks with mobile Cl(-) anions. The subsequent anion exchange with OH(-) further leads to a porous network with mobile OH(-) anions. New materials prepared by anion stripping can undergo ion exchange with anionic organic dyes and also exhibit much improved ionic conductivity compared to the original unmodified MOFs.
Related JoVE Video
'Druggable' alterations detected by Ion Torrent in metastatic colorectal cancer patients.
Oncol Lett
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
The frequency and poor prognosis of patients with metastatic colorectal cancer (mCRC) emphasizes the requirement for improved biomarkers for use in the treatment and prognosis of mCRC. In the present study, somatic variants in exonic regions of key cancer genes were identified in mCRC patients. Formalin-fixed, paraffin-embedded tissues obtained by biopsy of the metastases of mCRC patients were collected, and the DNA was extracted and sequenced using the Ion Torrent Personal Genome Machine. For the targeted amplification of known cancer genes, the Ion AmpliSeq™ Cancer Panel, which is designed to detect 739 Catalogue of Somatic Mutations in Cancer (COSMIC) mutations in 604 loci from 46 oncogenes and tumor suppressor genes using as little as 10 ng of input DNA, was used. The sequencing results were then analyzed using the Ampliseq™ Variant Caller plug-in within the Ion Torrent Suite software. In addition, Ingenuity Pathway software was used to perform a pathway analysis. The Cox regression analysis was also conducted to investigate the potential correlation between alteration numbers and clinical factors, including response rate, disease-free survival and overall survival. Among 10 specimens, 65 genetic alterations were identified in 24 genes following the exclusion of germline mutations using the SNP database, whereby 41% of the alterations were also present in the COSMIC database. No clinical factors were found to significantly correlate with the alteration numbers in the patients by statistical analysis. However, pathway analysis identified 'colorectal cancer metastasis signaling' as the most commonly mutated canonical pathway. This analysis further revealed mutated genes in the Wnt, phosphoinositide 3-kinase (PI3K)/AKT and transforming growth factor (TGF)-?/SMAD signaling pathways. Notably, 11 genes, including the expected APC, BRAF, KRAS, PIK3CA and TP53 genes, were mutated in at least two samples. Notably, 90% (9/10) of mCRC patients harbored at least one 'druggable' alteration (range, 1-6 alterations) that has been linked to a clinical treatment option or is currently being investigated in clinical trials of novel targeted therapies. These results indicated that DNA sequencing of key oncogenes and tumor suppressors enables the identification of 'druggable' alterations for individual colorectal cancer patients.
Related JoVE Video
Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response.
J. Am. Chem. Soc.
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
We apply a two-step strategy to realize ordered distribution of multiple components in one nanocluster (NC) with a crystallographically ordered core/shell structure. A coreless supertetrahedral chalcogenide Cd-In-S cluster is prepared, and then a copper ion is inserted at its void core site through a diffusion process to form a Cu-Cd-In-S quaternary NC. This intriguing molecular cluster with mono-copper core and Cd-In shell exhibits enhanced visible-light-responsive optical and photoelectric properties compared to the parent NC.
Related JoVE Video
Generalized synthesis of zeolite-type metal-organic frameworks encapsulating immobilized transition-metal clusters.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
Zeolites are generally made from tetrahedral nodes and ditopic linkers. Reported here is a versatile method based on trifunctional ligands. With this method, two functional groups are used to form zeolitic nets, while the third one serves to immobilize metal clusters within the channels. The process is driven by the coexistence of multiple inorganic building blocks generated in the heterometallic system. The generality of this method is shown by three distinct metal-organic frameworks mimicking AlPO(4)-5 (AFI) and BCT zeotypes as well as the cubic lcs topology. The correlation between the framework topology and trapped metal species reveals the unique bidirectional control (framework topology ? confined metal species) that may be exploited to create a large family of zeotypes with channels modified by different metal ions and clusters.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.