JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Surveillance for Toxigenic Vibrio cholerae in Surface Waters of Haiti.
Am. J. Trop. Med. Hyg.
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.
Related JoVE Video
Molecular and Phenotypic Characterization of Vibrio navarrensis Isolates Associated with Human Illness.
J. Clin. Microbiol.
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
We characterized 18 Vibrio isolates, including 15 recovered from human clinical specimens, and found that they clustered with two previously characterized Vibrio navarrensis isolates in a phylogenetic analysis. Four of the 18 strains may represent a new Vibrio species, distinct from V. navarrensis. The potential role of V. navarrensis in human disease needs further investigation.
Related JoVE Video
Draft Genome Sequence of Environmental Vibrio cholerae 2012EL-1759 with Similarities to the V. cholerae O1 Classical Biotype.
Genome Announc
PUBLISHED: 07-12-2014
Show Abstract
Hide Abstract
Vibrio cholerae 2012EL-1759 is an environmental isolate from Haiti that was recovered in 2012 during a cholera outbreak. The genomic backbone is similar to that of the prototypical V. cholerae O1 classical biotype strain O395, and it carries the Vibrio pathogenicity islands (VPI-1 and VPI-2) and a cholera toxin (CTX) prephage.
Related JoVE Video
Vibrio metoecus sp. nov., a close relative of Vibrio cholerae isolated from coastal brackish ponds and clinical specimens.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 06-27-2014
Show Abstract
Hide Abstract
A Gram-staining-negative, curved-rod-shaped bacterium with close resemblance to Vibrio cholerae, the aetiological agent of cholera, was isolated over the course of several years from coastal brackish water (17 strains) and from clinical cases (two strains) in the United States. 16S rRNA gene identity with V. cholerae exceeded 98?% yet an average nucleotide identity based on genome data of around 86?% and multi locus sequence analysis of six housekeeping genes (mdh, adk, gyrB, recA, pgi and rpoB) clearly delineated these isolates as a distinct genotypic cluster within the V. cholerae-V. mimicus clade. Most standard identification techniques do not differentiate this cluster of isolates from V. cholerae. Only amplification of the ompW gene using V. cholerae-specific primers and a negative Voges-Proskauer test showed a difference between the two clusters. Additionally, all isolated strains differed phenotypically from V. cholerae in their ability to utilize N-acetyl-d-galactosamine and d-glucuronic acid as sole carbon sources. Furthermore, they were generally unable to infect the slime mould Dictyostelium discoideum, a widespread ability in V. cholerae. Based on these clear phenotypic differences that are not necessarily apparent in standard tests as well as average nucleotide identity and phylogeny of protein-coding genes, we propose the existence of a novel species, Vibrio metoecus sp. nov. with the type strain OP3H(T) (?=?LMG 27764(T)?=?CIP 110643(T)). Due to its close resemblance to V. cholerae and the increasing number of strains isolated over the past several years, we suggest that V. metoecus sp. nov. is a relatively common species of the genus Vibrio, isolates of which have been identified as atypical isolates of V. cholerae in the past. Its isolation from clinical samples also indicates that strains of this species, like V. cholerae, are opportunistic pathogens.
Related JoVE Video
Population structure of Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis cases in the United States from 2003 to 2008.
Appl. Environ. Microbiol.
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Listeria monocytogenes can cause severe food-borne disease (listeriosis). Numerous outbreaks have involved three serotype 4b epidemic clones (ECs): ECI, ECII, and ECIa. However, little is known about the population structure of L. monocytogenes serotype 4b from sporadic listeriosis in the United States, even though most cases of human listeriosis are in fact sporadic. Here we analyzed 136 serotype 4b isolates from sporadic cases in the United States, 2003 to 2008, utilizing multiple tools including multilocus genotyping, pulsed-field gel electrophoresis, and sequence analysis of the inlAB locus. ECI, ECII, and ECIa were frequently encountered (32, 17, and 7%, respectively). However, annually 30 to 68% of isolates were outside these ECs, and several novel clonal groups were identified. An estimated 33 and 17% of the isolates, mostly among the ECs, were resistant to cadmium and arsenic, respectively, but resistance to benzalkonium chloride was uncommon (3%) among the sporadic isolates. The frequency of clonal groups fluctuated within the 6-year study period, without consistent trends. However, on several occasions, temporal clusters of isolates with indistinguishable genotypes were detected, suggesting the possibility of hidden multistate outbreaks. Our analysis suggests a complex population structure of serotype 4b L. monocytogenes from sporadic disease, with important contributions by ECs and several novel clonal groups. Continuous monitoring will be needed to assess long-term trends in clonality patterns and population structure of L. monocytogenes from sporadic listeriosis.
Related JoVE Video
Notes from the field: multistate outbreak of listeriosis linked to soft-ripened cheese--United States, 2013.
MMWR Morb. Mortal. Wkly. Rep.
PUBLISHED: 04-05-2014
Show Abstract
Hide Abstract
On June 27, 2013, the Minnesota Department of Health notified CDC of two patients with invasive Listeria monocytogenes infections (listeriosis) whose clinical isolates had indistinguishable pulsed-field gel electrophoresis (PFGE) patterns. A query of PulseNet, the national molecular subtyping network for foodborne disease surveillance, identified clinical and environmental isolates from other states. On June 28, CDC learned from the Food and Drug Administration's Coordinated Outbreak Response and Evaluation Network that environmental isolates indistinguishable from those of the two patients had been collected from Crave Brothers Farmstead Cheese during 2010-2011. An outbreak-related case was defined as isolation of L. monocytogenes with the outbreak PFGE pattern from an anatomic site that is normally sterile (e.g., blood or cerebrospinal fluid), or from a product of conception, with an isolate upload date during May 20-June 28, 2013. As of June 28, five cases were identified in four states (Minnesota, two cases; Illinois, Indiana, and Ohio, one each). Median age of the five patients was 58 years (range: 31-67 years). Four patients were female, including one who was pregnant at the time of infection. All five were hospitalized. One death and one miscarriage were reported.
Related JoVE Video
Multistate outbreak of listeriosis associated with cantaloupe.
N. Engl. J. Med.
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Although new pathogen-vehicle combinations are increasingly being identified in produce-related disease outbreaks, fresh produce is a rarely recognized vehicle for listeriosis. We investigated a nationwide listeriosis outbreak that occurred in the United States during 2011.
Related JoVE Video
Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti.
MBio
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics.
Related JoVE Video
Novel epidemic clones of Listeria monocytogenes, United States, 2011.
Emerging Infect. Dis.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
We identified a novel serotype 1/2a outbreak strain and 2 novel epidemic clones of Listeria monocytogenes while investigating a foodborne outbreak of listeriosis associated with consumption of cantaloupe during 2011 in the United States. Comparative analyses of strains worldwide are essential to identification of novel outbreak strains and epidemic clones.
Related JoVE Video
Toxigenic Vibrio cholerae O1 in water and seafood, Haiti.
Emerging Infect. Dis.
PUBLISHED: 11-22-2011
Show Abstract
Hide Abstract
During the 2010 cholera outbreak in Haiti, water and seafood samples were collected to detect Vibrio cholerae. The outbreak strain of toxigenic V. cholerae O1 serotype Ogawa was isolated from freshwater and seafood samples. The cholera toxin gene was detected in harbor water samples.
Related JoVE Video
Characterization of toxigenic Vibrio cholerae from Haiti, 2010-2011.
Emerging Infect. Dis.
PUBLISHED: 11-22-2011
Show Abstract
Hide Abstract
In October 2010, the US Centers for Disease Control and Prevention received reports of cases of severe watery diarrhea in Haiti. The cause was confirmed to be toxigenic Vibrio cholerae, serogroup O1, serotype Ogawa, biotype El Tor. We characterized 122 isolates from Haiti and compared them with isolates from other countries. Antimicrobial drug susceptibility was tested by disk diffusion and broth microdilution. Analyses included identification of rstR and VC2346 genes, sequencing of ctxAB and tcpA genes, and pulsed-field gel electrophoresis with SfiI and NotI enzymes. All isolates were susceptible to doxycycline and azithromycin. One pulsed-field gel electrophoresis pattern predominated, and ctxB sequence of all isolates matched the B-7 allele. We identified the tcpETCIRS allele, which is also present in Bangladesh strain CIRS 101. These data show that the isolates from Haiti are clonally and genetically similar to isolates originating in Africa and southern Asia and that ctxB-7 and tcpET(CIRS) alleles are undergoing global dissemination.
Related JoVE Video
Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa.
Emerging Infect. Dis.
PUBLISHED: 11-22-2011
Show Abstract
Hide Abstract
Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.
Related JoVE Video
Vibrio furnissii: an unusual cause of bacteremia and skin lesions after ingestion of seafood.
J. Clin. Microbiol.
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
Vibrio furnissii in the blood is rarely reported, which may explain why clinical features of bloodstream infections with this organism have not been described. We describe a patient who developed skin lesions and V. furnissii bacteremia and was successfully treated with fluoroquinolones. V. furnissii may be a serious pathogen in patients with underlying comorbidities who are exposed to seafood.
Related JoVE Video
Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations.
MBio
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
Vibrio cholerae represents both an environmental pathogen and a widely distributed microbial species comprised of closely related strains occurring in the tropical to temperate coastal ocean across the globe (Colwell RR, Science 274:2025-2031, 1996; Griffith DC, Kelly-Hope LA, Miller MA, Am. J. Trop. Med. Hyg. 75:973-977, 2006; Reidl J, Klose KE, FEMS Microbiol. Rev. 26:125-139, 2002). However, although this implies dispersal and growth across diverse environmental conditions, how locally successful populations assemble from a possibly global gene pool, relatively unhindered by geographic boundaries, remains poorly understood. Here, we show that environmental Vibrio cholerae possesses two, largely distinct gene pools: one is vertically inherited and globally well mixed, and the other is local and rapidly transferred across species boundaries to generate an endemic population structure. While phylogeographic analysis of isolates collected from Bangladesh and the U.S. east coast suggested strong panmixis for protein-coding genes, there was geographic structure in integrons, which are the only genomic islands present in all strains of V. cholerae (Chun J, et al., Proc. Natl. Acad. Sci. U. S. A. 106:15442-15447, 2009) and are capable of acquiring and expressing mobile gene cassettes. Geographic differentiation in integrons arises from high gene turnover, with acquisition from a locally co-occurring sister species being up to twice as likely as exchange with conspecific but geographically distant V. cholerae populations. IMPORTANCE Functional predictions of integron genes show the predominance of secondary metabolism and cell surface modification, which is consistent with a role in competition and predation defense. We suggest that the integron gene pools distinctness and tempo of sharing are adaptive in allowing rapid conversion of genomes to reflect local ecological constraints. Because the integron is frequently the main element differentiating clinical strains (Chun J, et al., Proc. Natl. Acad. Sci. U. S. A. 106:15442-15447, 2009) and its recombinogenic activity is directly stimulated by environmental stresses (Guerin E, et al., Science 324:1034, 2009), these observations are relevant for local emergence and subsequent dispersal.
Related JoVE Video
Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.
PLoS ONE
Show Abstract
Hide Abstract
In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.
Related JoVE Video
Genomic characterization of Listeria monocytogenes strains involved in a multistate listeriosis outbreak associated with cantaloupe in US.
PLoS ONE
Show Abstract
Hide Abstract
A multistate listeriosis outbreak associated with cantaloupe consumption was reported in the United States in September, 2011. The outbreak investigation recorded a total of 146 invasive illnesses, 30 deaths and one miscarriage. Subtyping of the outbreak associated clinical, food and environmental isolates revealed two serotypes (1/2a and 1/2b) and four pulsed-field gel electrophoresis two-enzyme pattern combinations I, II, III, and IV, including one rarely seen before this outbreak. A DNA-microarray, Listeria GeneChip®, developed by FDA from 24 Listeria monocytogenes genome sequences, was used to further characterize a representative sample of the outbreak isolates. The microarray data (in the form of present or absent calls of specific DNA sequences) separated the isolates into two distinct groups as per their serotypes. The gene content of the outbreak-associated isolates was distinct from that of the previously-reported outbreak strains belonging to the same serotypes. Although the 1/2b outbreak associated isolates are closely related to each other, the 1/2a isolates could be further divided into two distinct genomic groups, one represented by pattern combination I strains and the other represented by highly similar pattern combinations III and IV strains. Gene content analysis of these groups revealed unique genomic sequences associated with these two 1/2a genovars. This work underscores the utility of multiple approaches, such as serotyping, PFGE and DNA microarray analysis to characterize the composition of complex polyclonal listeriosis outbreaks.
Related JoVE Video
A hybrid approach for the automated finishing of bacterial genomes.
Nat. Biotechnol.
Show Abstract
Hide Abstract
Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.
Related JoVE Video
Vibrio mimicus infection associated with crayfish consumption, Spokane, Washington, 2010.
J. Food Prot.
Show Abstract
Hide Abstract
We report a cluster of severe diarrheal disease caused by Vibrio mimicus infection among four persons who had consumed leftover crayfish the day after a private crayfish boil. Gastrointestinal illness caused by Vibrio mimicus has not been reported previously in Washington State. Three cases were laboratory confirmed by stool culture; using PCR, isolates were found to have ctx genes that encode cholera toxin (CT). Two of the cases were hospitalized under intensive care with a cholera-like illness. The illnesses were most likely caused by cross-contamination of cooked crayfish with uncooked crayfish; however, V. mimicus was not isolated nor were CT genes detected by PCR in leftover samples of frozen crayfish. Clinicians should be aware that V. mimicus can produce CT and that V. mimicus infection can cause severe illness.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.