JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism.
Bioinformatics
PUBLISHED: 09-09-2010
Show Abstract
Hide Abstract
Identifying drug-drug interactions (DDIs) is a critical process in drug administration and drug development. Clinical support tools often provide comprehensive lists of DDIs, but they usually lack the supporting scientific evidences and different tools can return inconsistent results. In this article, we propose a novel approach that integrates text mining and automated reasoning to derive DDIs. Through the extraction of various facts of drug metabolism, not only the DDIs that are explicitly mentioned in text can be extracted but also the potential interactions that can be inferred by reasoning.
Related JoVE Video
Efficient extraction of protein-protein interactions from full-text articles.
IEEE/ACM Trans Comput Biol Bioinform
PUBLISHED: 05-26-2010
Show Abstract
Hide Abstract
Proteins and their interactions govern virtually all cellular processes, such as regulation, signaling, metabolism, and structure. Most experimental findings pertaining to such interactions are discussed in research papers, which, in turn, get curated by protein interaction databases. Authors, editors, and publishers benefit from efforts to alleviate the tasks of searching for relevant papers, evidence for physical interactions, and proper identifiers for each protein involved. The BioCreative II.5 community challenge addressed these tasks in a competition-style assessment to evaluate and compare different methodologies, to make aware of the increasing accuracy of automated methods, and to guide future implementations. In this paper, we present our approaches for protein-named entity recognition, including normalization, and for extraction of protein-protein interactions from full text. Our overall goal is to identify efficient individual components, and we compare various compositions to handle a single full-text article in between 10 seconds and 2 minutes. We propose strategies to transfer document-level annotations to the sentence-level, which allows for the creation of a more fine-grained training corpus; we use this corpus to automatically derive around 5,000 patterns. We rank sentences by relevance to the task of finding novel interactions with physical evidence, using a sentence classifier built from this training corpus. Heuristics for paraphrasing sentences help to further remove unnecessary information that might interfere with patterns, such as additional adjectives, clauses, or bracketed expressions. In BioCreative II.5, we achieved an f-score of 22 percent for finding protein interactions, and 43 percent for mapping proteins to UniProt IDs; disregarding species, f-scores are 30 percent and 55 percent, respectively. On average, our best-performing setup required around 2 minutes per full text. All data and pattern sets as well as Java classes that extend- - third-party software are available as supplementary information (see Appendix).
Related JoVE Video
Fuzzy c-means clustering with prior biological knowledge.
J Biomed Inform
PUBLISHED: 08-14-2009
Show Abstract
Hide Abstract
We propose a novel semi-supervised clustering method called GO Fuzzy c-means, which enables the simultaneous use of biological knowledge and gene expression data in a probabilistic clustering algorithm. Our method is based on the fuzzy c-means clustering algorithm and utilizes the Gene Ontology annotations as prior knowledge to guide the process of grouping functionally related genes. Unlike traditional clustering methods, our method is capable of assigning genes to multiple clusters, which is a more appropriate representation of the behavior of genes. Two datasets of yeast (Saccharomyces cerevisiae) expression profiles were applied to compare our method with other state-of-the-art clustering methods. Our experiments show that our method can produce far better biologically meaningful clusters even with the use of a small percentage of Gene Ontology annotations. In addition, our experiments further indicate that the utilization of prior knowledge in our method can predict gene functions effectively. The source code is freely available at http://sysbio.fulton.asu.edu/gofuzzy/.
Related JoVE Video
Querying parse tree database of Medline text to synthesize user-specific biomolecular networks.
Pac Symp Biocomput
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
Curated biological knowledge of interactions and pathways is largely available from various databases, and network synthesis is a popular method to gain insight into the data. However, such data from curated databases presents a single view of the knowledge to the biologists, and it may not be suitable to researchers specific needs. On the other hand, Medline abstracts are publicly accessible and encode the necessary information to synthesize different kinds of biological networks. In this paper, we propose a new paradigm in synthesizing biomolecular networks by allowing biologists to create their own networks through queries to a specialized database of Medline abstracts. With this approach, users can specify precisely what kind of information they want in the resulting networks. We demonstrate the feasibility of our approach in the synthesis of gene-drug, gene-disease and protein-protein interaction networks. We show that our approach is capable of synthesizing these networks with high precision and even finds relations that have yet to be curated in public databases. In addition, we demonstrate a scenario of recovering a drug-related pathway using our approach.
Related JoVE Video
A SNPshot of PubMed to associate genetic variants with drugs, diseases, and adverse reactions.
J Biomed Inform
Show Abstract
Hide Abstract
Genetic factors determine differences in pharmacokinetics, drug efficacy, and drug responses between individuals and sub-populations. Wrong dosages of drugs can lead to severe adverse drug reactions in individuals whose drug metabolism drastically differs from the "assumed average". Databases such as PharmGKB are excellent sources of pharmacogenetic information on enzymes, genetic variants, and drug response affected by changes in enzymatic activity. Here, we seek to aid researchers, database curators, and clinicians in their search for relevant information by automatically extracting these data from literature.
Related JoVE Video
Identifying novel drug indications through automated reasoning.
PLoS ONE
Show Abstract
Hide Abstract
With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.