JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Breast motion asymmetry during running.
J Sports Sci
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Abstract Breast asymmetry is common in females, despite a similar driving force; dynamic activity may result in asymmetrical breast motion. This preliminary study investigated how breast categorisation (left/right or dominant/non-dominant) may affect breast support recommendations and its relationship with breast pain. Ten females ran on a treadmill at 10 kph in three breast supports (no bra, everyday bra, sports bra). Five reflective markers on the thorax and nipples were tracked using infrared cameras (200 Hz) during five running gait cycles in each breast support. Multiplanar displacements of both breasts were calculated relative to the thorax. Although the maximum individual participant difference was 2.4 cm (mediolaterally) between the left and right breast, no left/right differences were found in any direction or support condition. Notably, correlations between breast pain and anterioposterior breast displacement were stronger with the left breast (r = 0.614) and moderate with the right breast (r = 0.456). Following participant categorisation according to the greatest magnitude of superioinferior breast displacement (dominant breast), results showed significant differences in displacement for all directions across different breast supports. When using breast kinematic data to examine relationships with breast pain or to recommend breast support requirements, data on both breasts should be collected.
Related JoVE Video
The movement of the trunk and breast during front crawl and breaststroke swimming.
J Sports Sci
PUBLISHED: 09-05-2014
Show Abstract
Hide Abstract
Abstract Breast displacement has been investigated in various activities to inform bra design, with the goal of minimising movement; however, breast motion during swimming has yet to be considered. The aim was to investigate trunk and breast kinematics whilst wearing varying levels of breast support during two swimming strokes. Six larger-breasted females swam front crawl and breaststroke (in a swimming flume), in three breast support conditions while three video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated. Greater breast displacement occurred mediolaterally in the swimsuit condition (7.8, s = 1.5 cm) during front crawl and superioinferiorly in the bare-breasted condition (3.7, s = 1.6 cm) during breaststroke, with the sports bra significantly reducing breast displacements. During front crawl, the greatest trunk roll occurred in the sports bra condition (43.1, s = 8.3°) and during breaststroke greater trunk extension occurred in the swimsuit condition (55.4, s = 5.0°); however, no differences were found in trunk kinematics between the three breast support conditions. Results suggest that the swimsuit was ineffective as a means of additional support for larger-breasted women during swimming; incorporating design features of sports bras into swimsuits may improve the breast support provided.
Related JoVE Video
Functionality and feedback: a protocol for a realist synthesis of the collation, interpretation and utilisation of PROMs data to improve patient care.
BMJ Open
PUBLISHED: 07-24-2014
Show Abstract
Hide Abstract
The feedback and public reporting of PROMs data aims to improve the quality of care provided to patients. Existing systematic reviews have found it difficult to draw overall conclusions about the effectiveness of PROMs feedback. We aim to execute a realist synthesis of the evidence to understand by what means and in what circumstances the feedback of PROMs data leads to the intended service improvements.
Related JoVE Video
Multiplanar breast kinematics during different exercise modalities.
Eur J Sport Sci
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Abstract Multiplanar breast movement reduction is crucial to increasing physical activity participation amongst women. To date, research has focused on breast movement during running, but until breast movement is understood during different exercise modalities, the breast support requirements for specific activities are unknown. To understand breast support requirements during different exercise modalities, this study aimed to determine multiplanar breast kinematics during running, jumping and agility tasks. Sixteen 32D participants had markers attached to their right nipple and torso. Relative multiplanar breast displacement was calculated during bare-breasted treadmill running (10 kph), maximum countermovement jumping and an agility t-test. Exercise modality influenced the magnitude and direction of breast displacement, velocity and acceleration (p < .05). Jumping produced greater vertical breast displacement (.09 m) but less mediolateral breast displacement (.05 m) than running or the agility task, but agility tasks produced the highest multiplanar breast velocities and acceleration. Breast movement during jumping was predominantly in the vertical direction, whereas the agility task produced a greater percentage of mediolateral breast acceleration than running or jumping. Exercise modality impacted upon the magnitude and distribution of bare-breasted multiplanar breast kinematics in this homogenous 32D cohort. Therefore, to reduce breast movement in women of a 32D bra size, manufacturers may wish to design sport-specific products, with greater vertical support for exercise modalities incorporating jumping and greater mediolateral support for agility tasks.
Related JoVE Video
Is torso soft tissue motion really an artefact within breast biomechanics research?
J Biomech
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
For rigid body POSE estimation, any relative movement of the tracking markers on a segment is often referred to as an artefact; however this may be an important part of the signal within breast biomechanics. This study aimed to quantify differences in breast range of motion when calculated relative to the torso segment using either direct or segment optimised POSE estimation algorithms. Markers on the torso and right nipple were tracked using infrared cameras (200 Hz) during five running gait cycles in three breast support conditions (no bra, everyday bra and sports bra). Multiplanar breast range of motion was calculated relative to the torso segment using two POSE estimation algorithms. First, the torso segment was defined using direct POSE estimation (direct). Second, while standing stationary in the anatomical position; the positional data of the torso markers were used to construct the torso using segment optimised POSE estimation (optimised). The torso segment length defined using direct POSE estimation changed significantly by 3.4 cm compared to that of the segment optimisation POSE estimation in the no bra condition. Subsequently, superioinferior breast range of motion was significantly greater (p<0.017) when calculated using direct POSE estimation, within each of the three breast support conditions. Segment optimisation POSE estimation is recommended to minimise any differences in breast motion associated with intra segment deformation between physical activity types. However, either algorithm is recommended when evaluating different breast support garments, as a correctly fitted bra does not cause the torso markers to move relative to each other.
Related JoVE Video
The effect of breast support on upper body muscle activity during 5km treadmill running.
Hum Mov Sci
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Breast support has previously been shown to influence surface EMG of the pectoralis major during running. Reductions in muscle activity have previously been associated with a reduction in energy cost, which may be advantageous for female runners. Ten female participants performed two self-paced (average pace 9kmh(-1)) 5km treadmill runs under two breast support conditions (low and high); an additional bare-breasted 2min run was also conducted. Surface EMG electrodes were positioned on the pectoralis major, anterior deltoid, medial deltoid, and upper trapezius, with data collected during the first 2min of running and each kilometer interval thereafter. Reductions in peak EMG of the pectoralis major, anterior and medial deltoid were reported when participants ran in the high breast support during the initial intervals of the run (up to the second kilometer). The increased activation in the pectoralis major, anterior and medial deltoid in the low breast support may be due to increased tension within these muscles, induced by the greater breast pain experienced in the low breast support. This may be a strategy to reduce the independent breast movement causing the pain through increased muscular activation. This study further promotes the use of a high breast support during running with potential benefits for treadmill running associated with reductions in muscular demand during a 5km run.
Related JoVE Video
Within-Participant Variance in Multiplanar Breast Kinematics During Five Kilometre Treadmill Running.
J Appl Biomech
PUBLISHED: 10-21-2013
Show Abstract
Hide Abstract
More and more studies are emerging reporting breast kinematics. These studies rarely present effect sizes, power and variance in the data. Important inferences are drawn from these data, including applications to product design, breast pain assessment, sports performance effects and more. The aim of the study was to explore the within-participant variance in breast kinematic data during a five kilometre run. Multiplanar breast kinematics and within-participant variance, defined by the coefficient of variation, for ten female participants wearing a low and high level breast support were calculated during a five kilometre run. Greater within-participant variance was reported in the high level (mean = 15%) breast support compared to the low level (mean = 12%). Within-participant variance in breast kinematics did not change over the five kilometre run. Differences in the magnitude of within-participant variance in breast kinematics were reported between directions of breast movement, with greater levels in the anteroposterior direction compared to mediolateral and vertical. It is important for the progression of this research area that the presence and sources of within-participant variance in breast kinematics are quantified and acknowledged, ensuring that the margin for meaningful differences can be reported.
Related JoVE Video
Can axes conventions of the trunk reference frame influence breast displacement calculation during running?
J Biomech
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
To obtain breast motion relative to the trunk, skin markers are used to define a local coordinate system (trunk), with respect to the global reference frame. This study aimed to quantify any differences in multiplanar breast displacement relative to the trunk using the first axis of rotation as either the mediolateral or longitudinal axis. Ten female participants ran on a treadmill (10kph) in three different breast supports (no bra, everyday bra, sports bra). Four reflective markers placed on the trunk and right nipple were tracked using eight infrared cameras (200Hz) during five running gait cycles in each breast support condition. Following marker identification, right breast multiplanar displacements were calculated relative to the trunk using either the mediolateral axis or the longitudinal axis as the first rotational axis to define the orthogonal local coordinate system. Results showed that there was a significant difference (8.2%) in superioinferior breast displacement in the sports bra condition when calculated using different axes conventions for the trunk segment. Furthermore, the greatest magnitude of breast displacement occurred in a different direction depending upon the selection of the first rotational axis. The definition of the primary reference axis of the trunk significantly alters the magnitude of superioinferior breast displacement and therefore it is recommended that the previously reported stable longitudinal axis should be defined as the first rotational axis during running. Caution should also be used as the axes convention influences the magnitude and direction of breast support requirements, which has important implications for bra design.
Related JoVE Video
Inorganics-in-organics: recent developments and outlook for 4G polymer solar cells.
Nanoscale
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
Recent developments in solution processable single junction polymer solar cells have led to a significant improvement in power conversion efficiencies from ?5% to beyond 9%. While much of the initial efficiency improvements were driven through judicious design of donor polymers, it is the engineering of device architectures through the incorporation of inorganic nanostructures and better processing that has continued the efficiency gains. Inorganic nano-components such as carbon nanotubes, graphene and its derivatives, metal nanoparticles and metal oxides have played a central role in improving device performance and longevity beyond those achieved by conventional 3G polymer solar cells. The present work aims to summarise the diverse roles played by the nanosystems and features in state of the art next generation (4G) polymer solar cells. The challenges associated with the engineering of such devices for future deployment are also discussed.
Related JoVE Video
Parasitic infection manipulates sodium regulation in the freshwater amphipod Gammarus pulex (L.).
Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.
PUBLISHED: 03-12-2011
Show Abstract
Hide Abstract
The acanthocephalan parasite Polymorphus minutus induces both physiological and behavioural effects in its intermediate host, Gammarus pulex. The net effect of parasite infection is to increase the likelihood of transmission to the definitive host. Osmoregulation is an energetically expensive mechanism that allows G. pulex to survive in dilute media. Any factor influencing osmoregulation is thus likely to affect the allocation of resources to other areas. This study investigated whether P. minutus infection alters sodium regulation in G. pulex. Haemolymph sodium concentration, water permeability and sodium fluxes were measured over the salinity acclimation range of G. pulex. Water permeability was unaltered by either acclimation salinity or parasite infection. Acclimation to 12‰ significantly raised the haemolymph sodium concentration, reduced the sodium influx, and increased the sodium efflux, to the same extent in both uninfected and infected G. pulex. However, parasite infection induced a significant increase in haemolymph sodium concentration in G. pulex acclimated to 6‰, which was not observed in uninfected G. pulex acclimated to the same salinity. Also, both sodium influx and sodium efflux were significantly lower in parasitized G. pulex acclimated to 6‰, when compared to uninfected G. pulex acclimated to the same salinity. It was concluded that the parasite induced disturbances to sodium regulation in G. pulex acclimated to 6‰ were a functional consequence of the manipulative strategy employed to alter behaviour, rather than a primary target.
Related JoVE Video
A protocol for monitoring soft tissue motion under compression garments during drop landings.
J Biomech
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
This study used a single-subject design to establish a valid and reliable protocol for monitoring soft tissue motion under compression garments during drop landings. One male participant performed six 40 cm drop landings onto a force platform, in three compression conditions (none, medium high). Five reflective markers placed on the thigh under the compression garment and five over the garment were filmed using two cameras (1000 Hz). Following manual digitisation, marker coordinates were reconstructed and their resultant displacements and maximum change in separation distance between skin and garment markers were calculated. To determine reliability of marker application, 35 markers were attached to the thigh over the high compression garment and filmed. Markers were then removed and re-applied on three occasions; marker separation and distance to thigh centre of gravity were calculated. Results showed similar ground reaction forces during landing trials. Significant reductions in the maximum change in separation distance between markers from no compression to high compression landings were reported. Typical errors in marker movement under and over the garment were 0.1mm in medium and high compression landings. Re-application of markers showed mean typical errors of 1mm in marker separation and <3mm relative to thigh centre of gravity. This paper presents a novel protocol that demonstrates sufficient sensitivity to detect reductions in soft tissue motion during landings in high compression garments compared to no compression. Additionally, markers placed under or over the garment demonstrate low variance in movement, and the protocol reports good reliability in marker re-application.
Related JoVE Video
Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings.
Sports Biomech
PUBLISHED: 12-18-2010
Show Abstract
Hide Abstract
This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mats stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.
Related JoVE Video
Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates.
Ann. Anat.
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
Recent studies on 2D substrates have revealed the importance of surface properties in affecting cell behaviour. In particular, surface topography appears to influence and direct cell migration. The development of new technologies of hot embossing and micro-imprinting has made it possible to study cell interactions with controlled micro features and to determine how these features can affect cell behaviour. Several studies have been carried out on the effect of microstructures on cell adhesion, cell guidance and cell proliferation. However, there is still a lack of knowledge on how these features affect mesenchymal stem cell differentiation. This study was designed to evaluate whether highly controlled microstructures on PMMA could induce rMSC differentiation into an osteogenic lineage. Structured PMMA was seeded with rMSC and cell number; cell morphology and cell differentiation were evaluated. Results confirm that microstructures not only affect cell proliferation and alignment but also have a synergistic effect with osteogenic medium on rMSC differentiation into mature osteoblasts.
Related JoVE Video
Reducing ground reaction forces in gymnastics landings may increase internal loading.
J Biomech
PUBLISHED: 01-12-2009
Show Abstract
Hide Abstract
The aim of this study was to use a subject-specific seven-link wobbling mass model of a gymnast, and a multi-layer model of a landing mat, to determine landing strategies that minimise ground reaction forces (GRF) and internal forces. Subject-specific strength parameters were determined that defined the maximum voluntary torque/angle/angular velocity relationship at each joint. These relationships were used to produce subject-specific lumped linear muscle models for each joint. Muscle activation histories were optimised using a Simplex algorithm to minimise GRF or bone bending moments for forward and backward rotating vault landings. Optimising the landing strategy to minimise each of the GRF reduced the peak vertical and horizontal GRF by 9% for the backward rotating vault and by 8% and 48% for the forward rotating vault, compared to a matching simulation. However, most internal loading measures (bone bending moments, joint reaction forces and muscle forces) increased compared to the matching simulation. Optimising the landing strategy to minimise the peak bone bending moments resulted in reduced internal loading measures, and in most cases reduced GRF. Bone bending moments were reduced by 27% during the forward rotating vault and by 2% during the backward rotating vault landings when compared to the matching simulations. It is possible for a gymnast to modify their landing strategy in order to minimise internal forces and lower GRF. However, using a reduction in GRF, due to a change in landing strategy, as a basis for a reduction in injury potential in vaulting movements may not be appropriate since internal loading can increase.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.